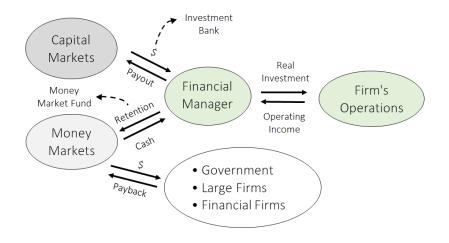
Module 2: Portfolio Theory (BUSFIN 4221 - Investments)

Andrei S. Gonçalves¹

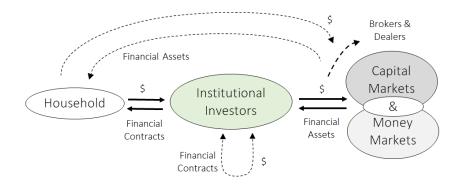
¹Finance Department The Ohio State University

Fall 2016

Module 1 - The Demand for Capital



Module 1 - The Supply of Capital

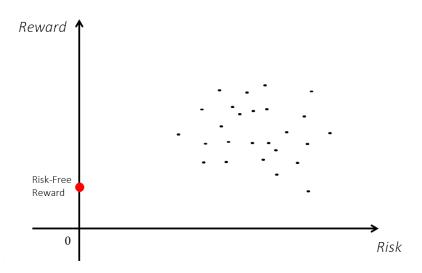


The Efficient Fronti

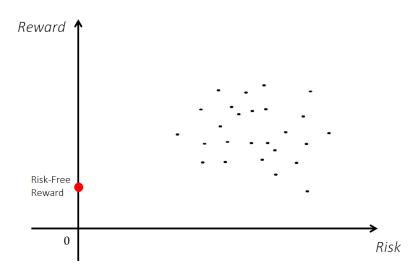
Module 1 - Investment Principle

$$PV_{t} = \sum_{h=1}^{\infty} \frac{\mathbb{E}_{t} \left[CF_{t+h} \right]}{\left(1 + dr_{t,h} \right)^{h}}$$

This Module: Creating a Portfolio



This Section: Defining Risk and Reward



Measuring Performance: Returns

$$r_{t} = \frac{(P_{t} + CF_{t}) - P_{t-1}}{P_{t-1}}$$
$$= \underbrace{\frac{(P_{t} - P_{t-1})}{P_{t-1}}}_{Capital \ Gain} + \underbrace{\frac{CF_{t}}{P_{t-1}}}_{Yied}$$

• Arithmetic average return (or simple "average return"):

$$\bar{r} = \frac{r_1 + r_2 + \dots + r_T}{T}$$

Geometric average return:

$$\bar{r}_{G} = \left\{ \left(1 + r_{1}\right) \times \left(1 + r_{2}\right) \times ... \times \left(1 + r_{T}\right)
ight\}^{1/\tau}$$

Measuring Performance: Annual Returns

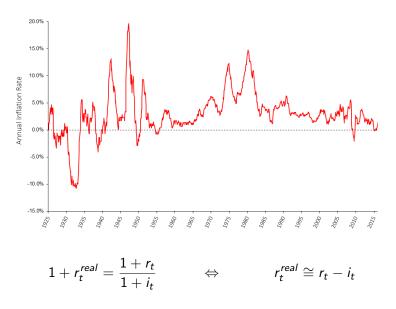
- A return of 1% in the previous month is not comparable with a return of 12% in the previous year. We need to fix the time period of different returns to make them comparable
- The effective annual rate, *ear*_t, does that for you:

$$1 + ear_t = (1 + r_t)^n$$

 n is the number of periods in a year. For instance, n = 1 for annual r_t and n = 12 for monthly r_t

Index Models

Measuring Performance: Inflation Effect



Returns as a Random Variable: Indices

1\$ Invested in January of 1970

Returns as a Random Variable: $\mathbb{E}[r_t]$ and $\sigma[r_t]$

Economic Scenario Next Year (<i>s</i>)	p (s)	r (s)	$r(s) - \mathbb{E}[r_t]$
Very High Growth	0.15	30%	20%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	10%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	0%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	-15%
Recession	0.05	-40%	-50%

$$\mathbb{E}[r_t] = \sum_{s} p(s) \times r(s) = 10\%$$
$$\sigma[r_t] = \sqrt{\sum_{s} p(s) \times \{r(s) - \mathbb{E}[r_t]\}^2} = 16\%$$

Returns as a Random Variable: $\mathbb{E}[r_t]$ and $\sigma[r_t]$

Economic Scenario Next Year (<i>s</i>)	p (s)	r (s)	$r(s) - \mathbb{E}[r_t]$
Very High Growth	0.15	40%	30%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	30%	20%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	0%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-20%	-30%
Recession	0.05	-60%	-70%

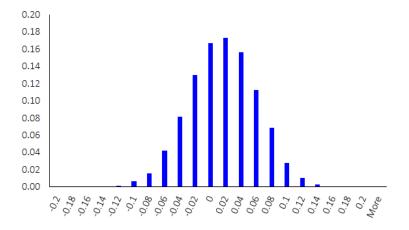
$$\mathbb{E}[r_t] = \sum_{s} p(s) \times r(s) = 10\%$$
$$\sigma[r_t] = \sqrt{\sum_{s} p(s) \times \{r(s) - \mathbb{E}[r_t]\}^2} = 26\%$$

Modeling Returns: $r_t \sim \mathcal{N}(\mu, \sigma)$

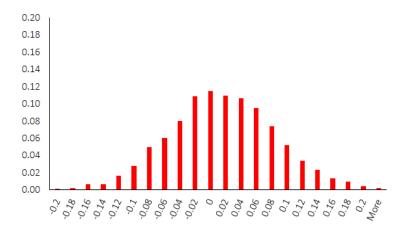
•
$$\mu = \mathbb{E}[\mathbf{r}_t]$$
 and $\sigma = \sigma[\mathbf{r}_t]$

- Index simulation: I simulate r_t and use it to get future prices
- If r_t are truly normal, then only μ and σ matter (they describe entire distribution). In this case, the only measure of risk is σ
- If $r_{i,t}$ are normal, then so are portfolio returns: $r_{p,t} = w_1 \times r_{1,t} + w_2 \times r_{2,t} + \dots + w_N \times r_{N,t}$
- If daily r_t are normal, annual r_t are <u>not</u> normal: horizon matters!

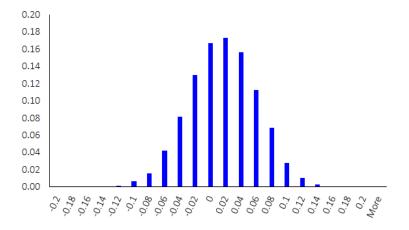
Modeling Returns: $r_t \sim \mathcal{N} (\mu = 0.6\%, \sigma = 4.4\%)$



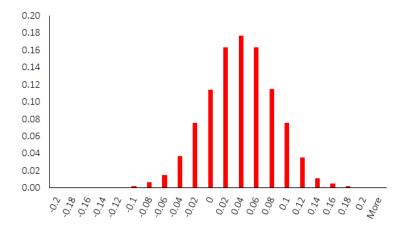
Modeling Returns: $r_t \sim \mathcal{N} (\mu = 0.6\%, \sigma = 7.0\%)$



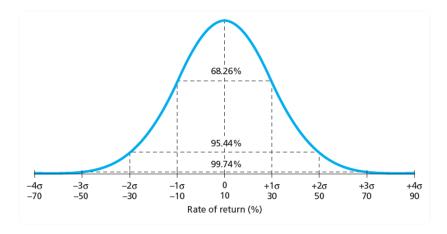
Modeling Returns: $r_t \sim \mathcal{N} (\mu = 0.6\%, \sigma = 4.4\%)$



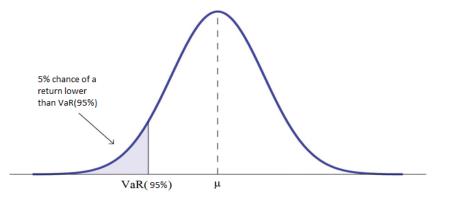
Modeling Returns: $r_t \sim \mathcal{N} (\mu = 3.0\%, \sigma = 4.4\%)$



Modeling Returns: $r_t \sim \mathcal{N} (\mu = 10\%, \sigma = 10\%)$



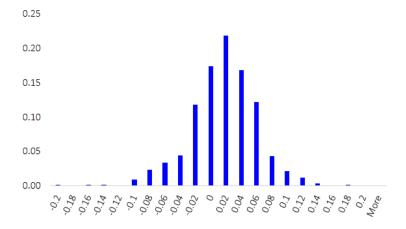
Modeling Returns: Tail Risk for Normal Returns?



$$VaR(95\%) = \mathbb{E}[r_t] - 1.64 \times \sigma[r_t]$$

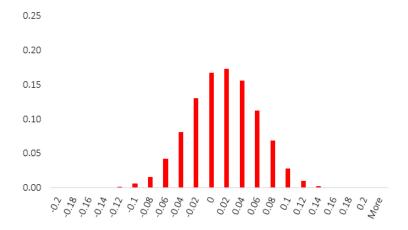
The Efficient Fronti

Modeling Returns: S&P 500



11

Modeling Returns: $r_t \sim \mathcal{N}(\mu_{S\&P}, \sigma_{S\&P})$



Data: Estimating Model from Time Series of r_t

• If $r_t \sim \mathcal{N}\left(\mu, \sigma
ight)$, how can we estimate μ and σ from data?

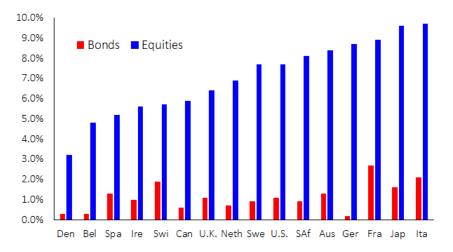
• Recall:
$$\mu = \mathbb{E}[r_t] = \sum_{s} p(s) \times r(s)$$

 $\sigma = \sigma[r_t] = \sqrt{\sum_{s} p(s) \times \{r(s) - \mathbb{E}[r_t]\}^2}$

• Use each data observation as a "scenario" with equal probability:

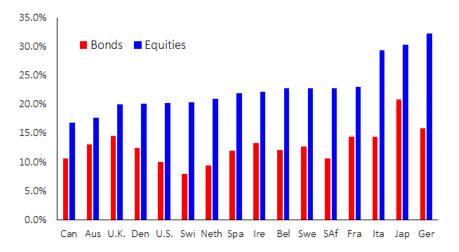
$$\hat{\mu} = \frac{1}{T} \times \sum_{t=1}^{T} r_t = \overline{r}$$
$$\hat{\sigma} = \sqrt{\frac{1}{T-1} \times \sum_{t=1}^{T} \{r_t - \overline{r}\}^2}$$

Data: $(\bar{r} - \bar{r}_{TBill})$ around the World from 1900-2000



Source: Dimson et al (2002) - Triumph of the optimists: 101 years of global investment returns

Data: $\hat{\sigma}[r_t]$ around the World from 1900-2000

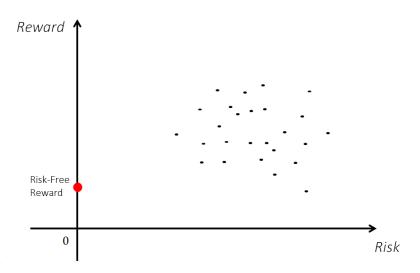


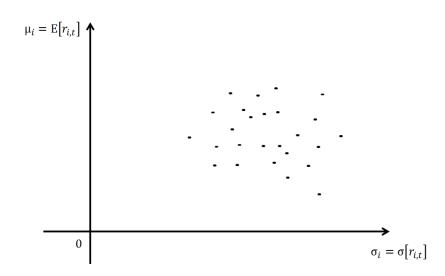
Source: Dimson et al (2002) - Triumph of the optimists: 101 years of global investment returns

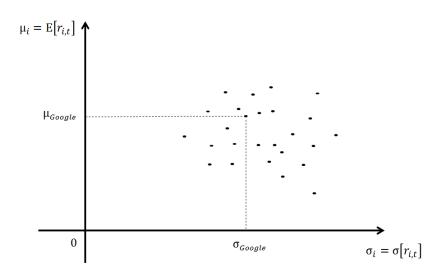
If asset A daily r_t follow a normal distribution, then:

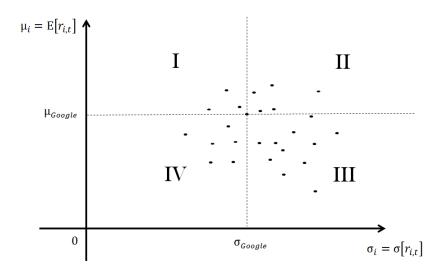
- a) Asset A monthly r_t also do
- **b)** An increase in $\sigma[r_t]$ implies an increase in the tail risk the asset
- c) Inflation does not matter for the real return on asset A
- d) The geometric average return and the average return are the same
- e) All we need to know about asset A in order to fully understand its daily returns distribution is $\sigma[r_t]$

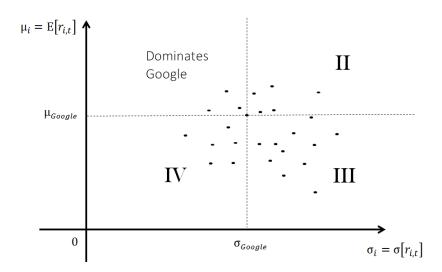
This Section: Find the "Best" Risky Portfolios

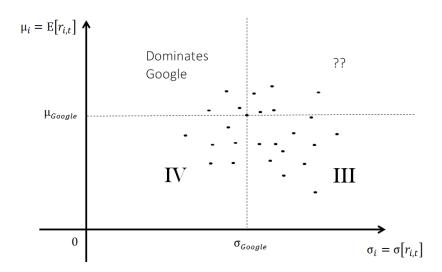


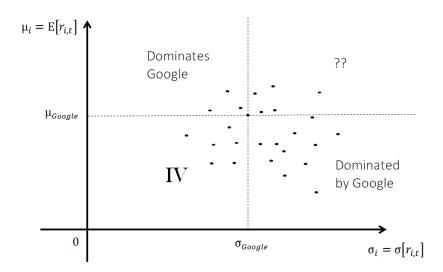


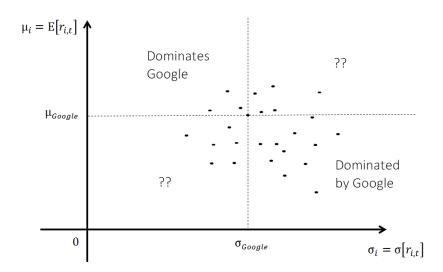












Diversification: Basic Principle

Diversification: Basic Principle

Diversification: Simple Example

Economic Scenario	p(s)	r_{Equity}	r _{Gold}	50% - 50%
Next Year (s)	<i>p</i> (3)			r _{Portfolio}
Very High Growth	0.15	30%	-12%	9%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	5%	13%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	15%	13%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	20%	8%
Recession	0.05	-40%	25%	-8%
$\mathbb{E}[r_t] =$				
$\sigma[r_t] =$				

Economic Scenario	p (s)	r _{Equity}	r _{Gold}	50% - 50%
Next Year (s)				r _{Portfolio}
Very High Growth	0.15	30%	-12%	9%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	5%	13%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	15%	13%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	20%	8%
Recession	0.05	-40%	25%	-8%
$\mathbb{E}[r_t] =$		10%	10%	
$\sigma\left[r_{t}\right] =$		16%	11%	

Economic Scenario	p (s)	r _{Equity}	r _{Gold}	50% - 50%
Next Year (s)				r _{Portfolio}
Very High Growth	0.15	30%	-12%	9%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	5%	13%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	15%	13%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	20%	8%
Recession	0.05	-40%	25%	-8%
$\mathbb{E}[r_t] =$		10%	10%	10%
$\sigma\left[r_{t}\right] =$		16%	11%	5%

Economic Scenario	p (s)	r_{Equity}	r _{Gold}	40% - 60%
Next Year (s)				r _{Portfolio}
Very High Growth	0.15	30%	-12%	5%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	5%	11%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	15%	13%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	20%	10%
Recession	0.05	-40%	25%	-1%
$\mathbb{E}[r_t] =$		10%	10%	10%
$\sigma\left[r_{t}\right] =$		16%	11%	4%

Economic Scenario	p (s)	r _{Equity}	r _{Gold}	50% - 50%
Next Year (s)				r _{Portfolio}
Very High Growth	0.15	30%	-12%	9%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	5%	13%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	15%	13%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	20%	8%
Recession	0.05	-40%	25%	-8%
$\mathbb{E}[r_t] =$		10%	10%	10%
$\sigma\left[r_{t}\right] =$		16%	11%	5%

Economic Scenario	p (s)	r_{Equity}	r _{Gold}	50%-50%
Next Year (s)				r Portfolio
Very High Growth	0.15	30%	-7%	12%
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	5%	13%
$Growth = \mathbb{E}\left[\textit{Growth}\right]$	0.35	10%	15%	13%
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	26%	11%
Recession	0.05	-40%	-10%	-25%
$\mathbb{E}[r_t] =$		10%	10%	10%
$\sigma[r_t] =$		16%	11%	8%

Diversification: Covariance & Correlation

Economic Scenario	p(s)		To U	$(r_E - \mathbb{E}[r_E]) \times (r_G - \mathbb{E}[r_G])$		
Next Year (s)	<i>p</i> (3)	' Equity	Gold	$(I_E - \mathbb{E}[I_E]) \times (I_G - \mathbb{E}[I_G])$		
Very High Growth	0.15	30%	-7%	-0.034		
$Growth > \mathbb{E}\left[\textit{Growth}\right]$	0.25	20%	5%	-0.005		
$Growth = \mathbb{E}\left[\mathit{Growth}\right]$	0.35	10%	15%	0.000		
$Growth < \mathbb{E}\left[\textit{Growth}\right]$	0.2	-5%	26%	-0.024		
Recession	0.05	-40%	-10%	0.100		
$\mathbb{E}[r_t] =$		10%	10%			
$\sigma[r_t] =$		16%	11%			

$$Cov[r_E, r_G] = \sum_{s} p(s) \times \{r_E(s) - \mathbb{E}[r_E]\} \times \{r_G(s) - \mathbb{E}[r_G]\}$$
$$\rho[r_E, r_G] = \frac{Cov[r_E, r_G]}{\sigma[r_E] \times \sigma[r_G]} = -0.34$$

Diversification: Two Risky Assets

- Consider the portfolio $r_p = w_A \cdot r_A + w_B \cdot r_B$
- Portfolio expected return, $\mathbb{E}[r_p]$, is given by:

$$\mathbb{E}\left[r_{\rho}\right] = w_{A} \cdot \mathbb{E}\left[r_{A}\right] + w_{B} \cdot \mathbb{E}\left[r_{B}\right]$$

• Portfolio variance, $\sigma^2[r_p] = \sigma_p^2$, is given by:

$$\sigma_{p}^{2} = w_{A}^{2} \cdot \sigma_{A}^{2} + w_{B}^{2} \cdot \sigma_{B}^{2} + 2 \cdot w_{A} \cdot w_{B} \cdot Cov [r_{A}, r_{B}]$$

$$= w_{A}^{2} \cdot \sigma_{A}^{2} + w_{B}^{2} \cdot \sigma_{B}^{2} + 2 \cdot w_{A} \cdot w_{B} \cdot \sigma_{A} \cdot \sigma_{B} \cdot \rho [r_{A}, r_{B}]$$

Diversification: Two Risky Assets

- When do we have diversification: $\sigma_p < w_A \cdot \sigma_A + w_B \cdot \sigma_B$?
- Suppose $\rho[\mathbf{r}_A, \mathbf{r}_B] = 1$, then:

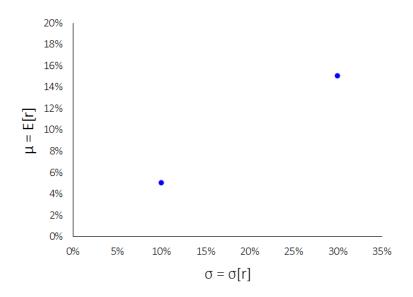
$$\sigma_p^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2 \cdot w_A \cdot w_B \cdot \sigma_A \cdot \sigma_B \cdot 1$$

$$= (w_A \cdot \sigma_A + w_B \cdot \sigma_B)^2$$
$$\Downarrow$$

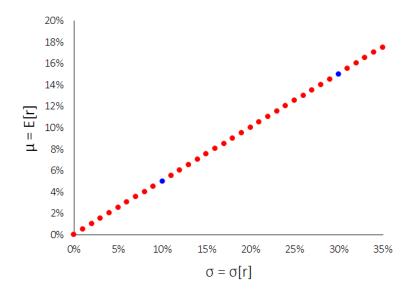
 $\sigma_{p} = w_{A} \cdot \sigma_{A} + w_{B} \cdot \sigma_{B}$

• Any $\rho[\mathbf{r}_{A}, \mathbf{r}_{B}] < 1$ produces $\sigma_{p} < \mathbf{w}_{A} \cdot \sigma_{A} + \mathbf{w}_{B} \cdot \sigma_{B}$

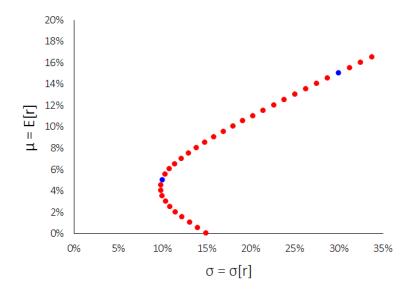
Diversification: Two Risky Assets



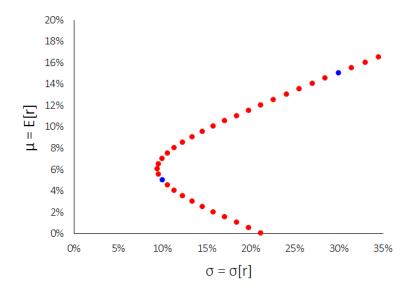
Diversification: Two Risky Assets ($\rho = 1.0$)



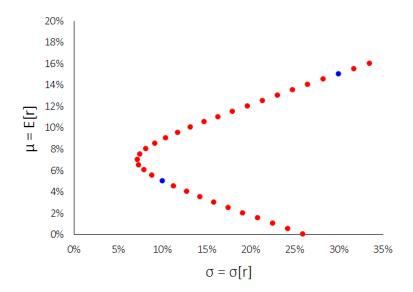
Diversification: Two Risky Assets ($\rho = 0.5$)



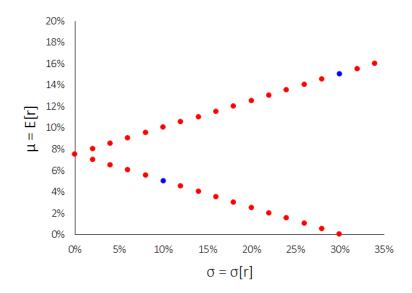
Diversification: Two Risky Assets ($\rho = 0.0$)



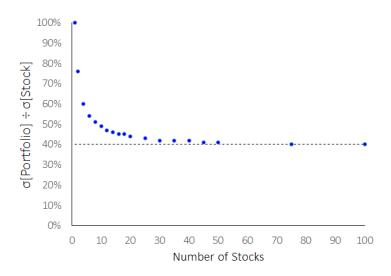
Diversification: Two Risky Assets ($\rho = -0.5$)



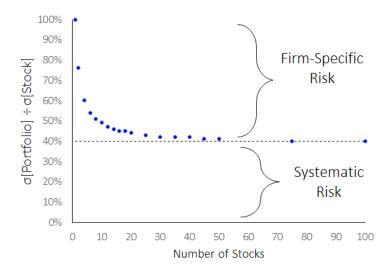
Diversification: Two Risky Assets ($\rho = -1.0$)

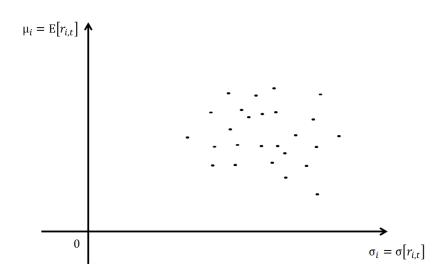


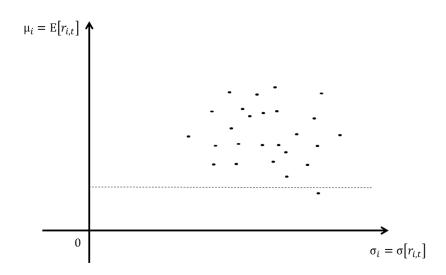
Diversification: Systematic \times Firm-Specific Risk

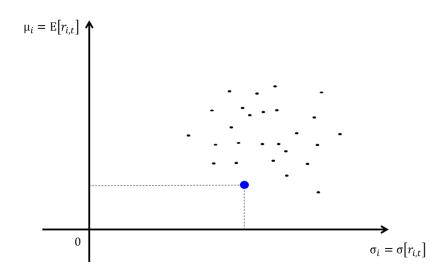


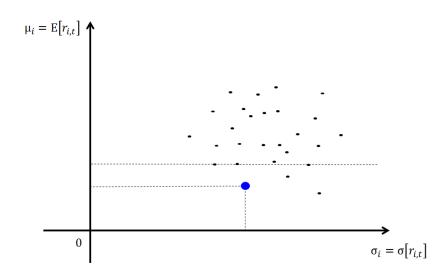
Diversification: Systematic \times Firm-Specific Risk

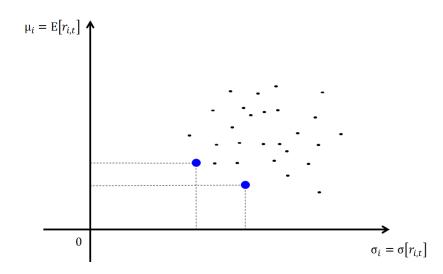


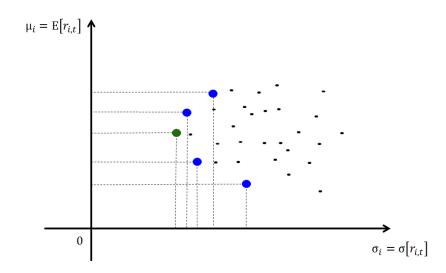


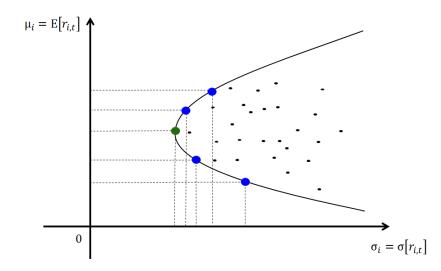


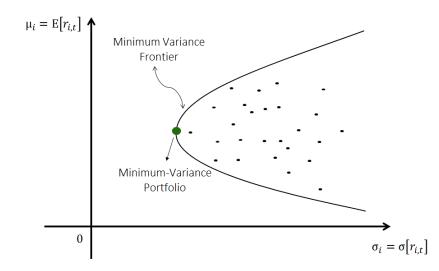


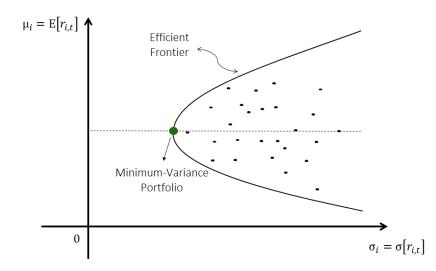








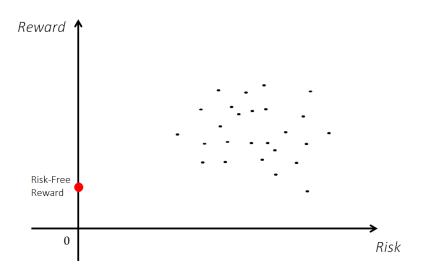




Which of the following is false regarding the Efficient Frontier?

- a) It relies on estimates of risk, $\sigma[r_t]$, reward, $\mathbb{E}[r_t]$, and covariances for multiple assets
- b) Any portfolio formed by first selecting a target $\mathbb{E}[r_t]$ and then choosing the portfolio with minimum risk among the ones with such target $\mathbb{E}[r_t]$ is an efficient portfolio
- c) It restricts the set of potential portfolios an investor should choose from if he measures risk by $\sigma[r_t]$ and reward by $\mathbb{E}[r_t]$
- d) It depends heavily on the power of diversification
- e) With only two assets, the more negatively correlated they are the better is the efficient frontier investors can form using them

This Section: Adding Risk Free Asset



• Recall that for $r_p = w_A \cdot r_A + w_B \cdot r_B$ we have:

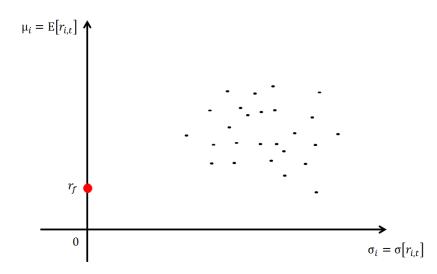
$$\mathbb{E}\left[r_{\rho}\right] = w_{A} \cdot \mathbb{E}\left[r_{A}\right] + w_{B} \cdot \mathbb{E}\left[r_{B}\right]$$

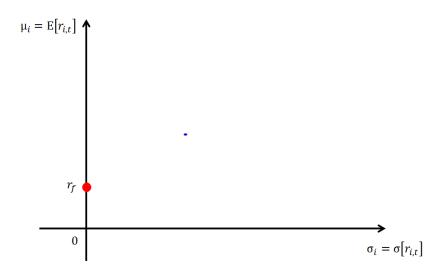
$$\sigma_p^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2 \cdot w_A \cdot w_B \cdot \sigma_A \cdot \sigma_B \cdot \rho \left[r_A, r_B \right]$$

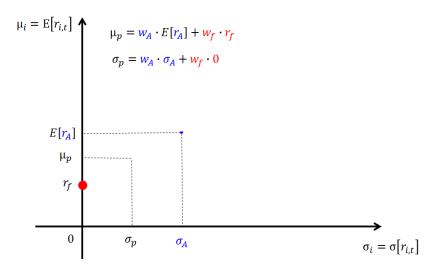
• This means that $r_p = w_A \cdot r_A + w_f \cdot r_f$ satisfies:

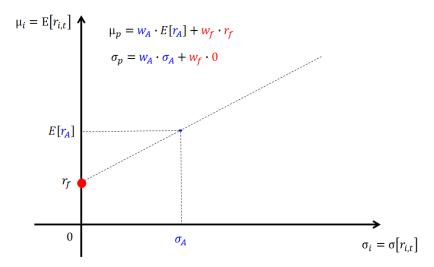
$$\mathbb{E}\left[r_{\rho}\right] = w_{A} \cdot \mathbb{E}\left[r_{A}\right] + w_{f} \cdot r_{f}$$

$$\sigma_p^2 = w_A^2 \cdot \sigma_A^2 \quad \Longrightarrow \quad \sigma_p = w_A \cdot \sigma_A + w_f \cdot \mathbf{0}$$

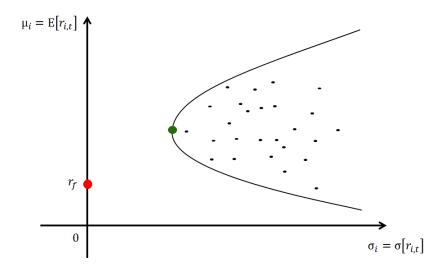




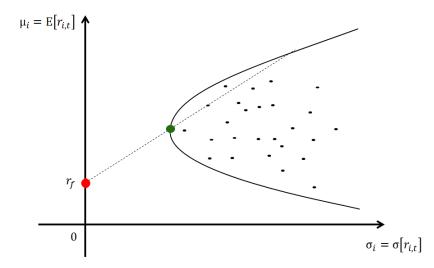




$\sigma[r_t] \times \mathbb{E}[r_t]$: Capital Allocation Line

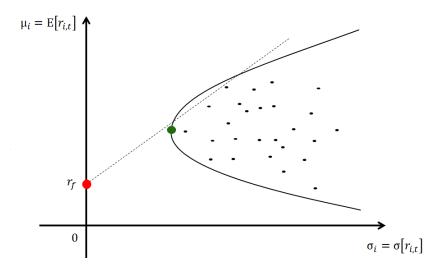


$\sigma[r_t] \times \mathbb{E}[r_t]$: Capital Allocation Line

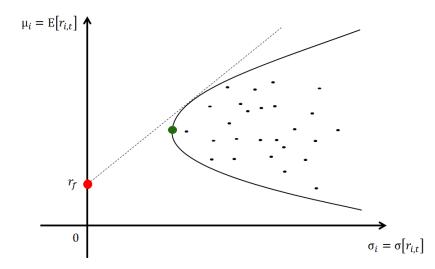


4

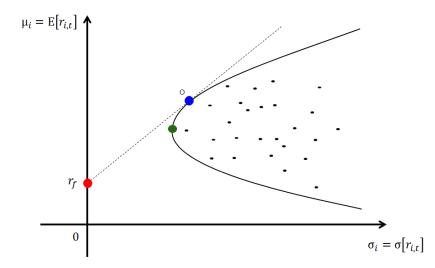
$\sigma[\mathbf{r}_t] \times \mathbb{E}[\mathbf{r}_t]$: Capital Allocation Line



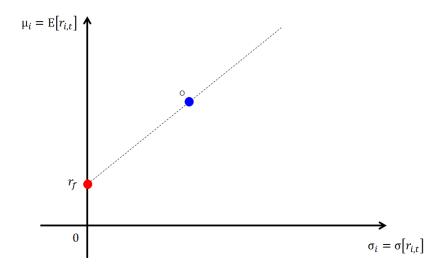
$\sigma[\mathbf{r}_t] \times \mathbb{E}[\mathbf{r}_t]$: Capital Allocation Line



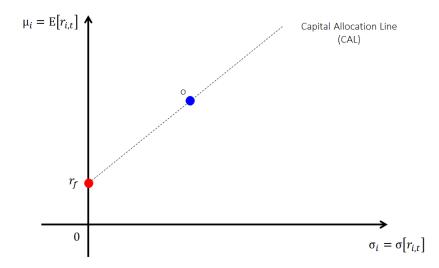
$\sigma[\mathbf{r}_t] \times \mathbb{E}[\mathbf{r}_t]$: Capital Allocation Line



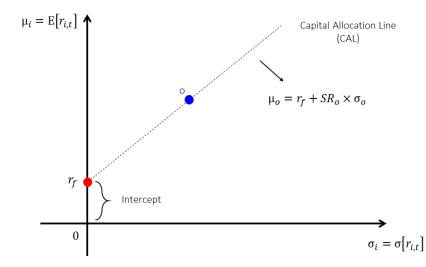
$\sigma[\mathbf{r}_t] \times \mathbb{E}[\mathbf{r}_t]$: Capital Allocation Line



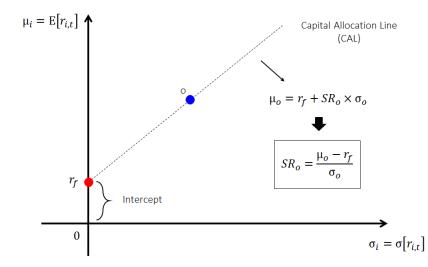
$\sigma[r_t] \times \mathbb{E}[r_t]$: Capital Allocation Line



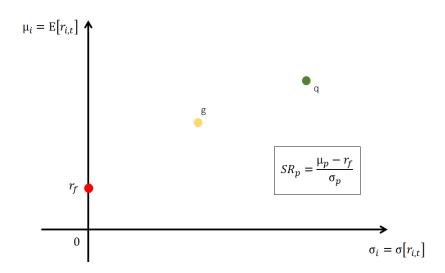
$\sigma[r_t] \times \mathbb{E}[r_t]$: Sharpe Ratio



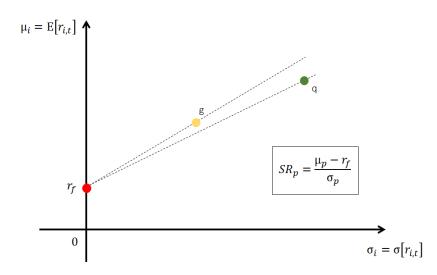
$\sigma[r_t] \times \mathbb{E}[r_t]$: Sharpe Ratio



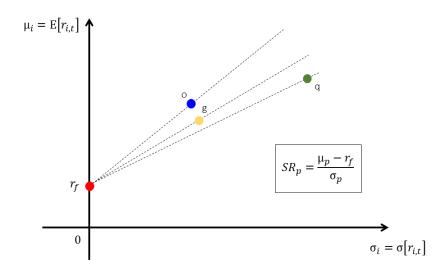
 $\sigma[r_t] \times \mathbb{E}[r_t]$: Portfolio Comparison using Sharpe Ratio



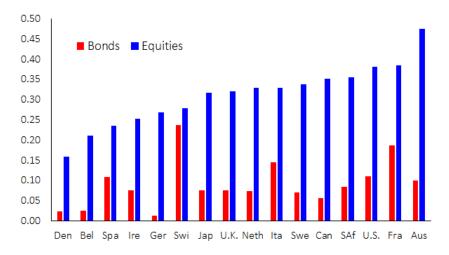
$\sigma[r_t] \times \mathbb{E}[r_t]$: Portfolio Comparison using Sharpe Ratio



 $\sigma[r_t] \times \mathbb{E}[r_t]$: Portfolio Comparison using Sharpe Ratio

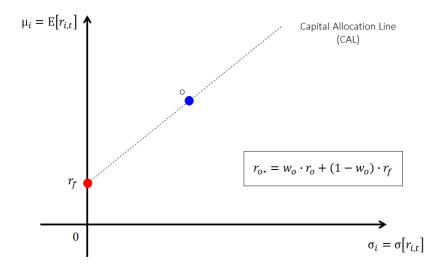


Sharpe Ratios around the World from 1900-2000

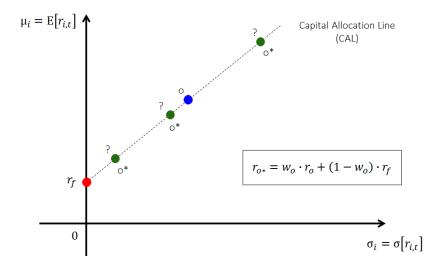


Source: Dimson et al (2002) - Triumph of the optimists: 101 years of global investment returns

$\sigma[r_t] \times \mathbb{E}[r_t]$: Complete Portfolio o^*



$\sigma[r_t] \times \mathbb{E}[r_t]$: Complete Portfolio o^*



Properties of $\mathbb{E}[r_{o^*}]$ and $\sigma[r_{o^*}]$

• Recall that for $r_p = w_A \cdot r_A + w_B \cdot r_B$ we have:

$$\mathbb{E}\left[r_{\rho}\right] = w_{A} \cdot \mathbb{E}\left[r_{A}\right] + w_{B} \cdot \mathbb{E}\left[r_{B}\right]$$

$$\sigma_p^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2 \cdot w_A \cdot w_B \cdot \sigma_A \cdot \sigma_B \cdot \rho [r_A, r_B]$$

• This means that $r_{o*} = w_o \cdot r_o + (1 - w_o) \cdot r_f$ satisfies:

$$\mathbb{E}\left[r_{o*}\right] = w_o \cdot \mathbb{E}\left[r_o\right] + \left(1 - w_o\right) \cdot r_f$$

$$\sigma_{o^*}^2 = w_o^2 \cdot \sigma_o^2 \quad \Longrightarrow \quad \sigma_{o^*} = w_o \cdot \sigma_o$$

U

Deciding on Complete Portfolio o*

- Investors happiness depends on $\sigma_{o^*} = \sigma[r_{o^*}]$ and $\mu_{o^*} = \mathbb{E}[r_{o^*}]$
- We can model investors happiness (called utility function) as:

$$(\sigma_{o^*}, \mu_{o^*}) = \mu_{o^*} - 0.5 \cdot A \cdot \sigma_{o^*}^2$$
$$= \underbrace{w_o \cdot \mu_o + (1 - w_o) r_f}_{\mu_{o^*}} - 0.5 \cdot A \cdot \underbrace{w_o^2 \cdot \sigma_o^2}_{\sigma_{o^*}^2}$$

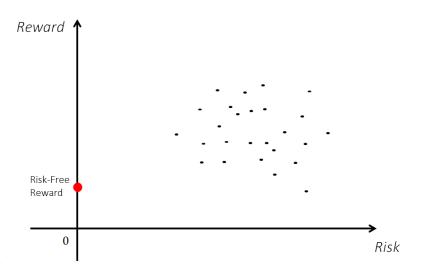
• If investors select w_o to maximize their happiness we have:

$$w_{o} = \frac{1}{A \cdot \sigma_{o}^{2}} \cdot (\mu_{o} - r_{f})$$
$$= \frac{1}{A \cdot \sigma_{o}} SR_{o} \implies SR_{o} = w_{o} \cdot A \cdot \sigma_{o}$$

The task of forming the "complete portfolio" (called o^*), is separated into two different tasks: (i) finding the "optimal" risky portfolio (called o) and (ii) getting o^* by combining portfolio owith r_f . Which of the following is true regarding this process:

- a) Two investors using the same inputs to step (i) always end up with the same risky portfolio, *o*
- b) Step (ii) is investor specific. However, if two investors have the same risk aversion, they always end up with the same o^*
- c) Portfolio *o* can only be found if we first find the entire efficient frontier
- d) The negative covariance between r_f and o is very important to decide on portfolio o^*
- e) Portfolio *o* is the portfolio with lowest risk among all possible portfolios that exclude the risk-free rate

This Section: Inputs to $\sigma[r_t] \times \mathbb{E}[r_t]$ Framework



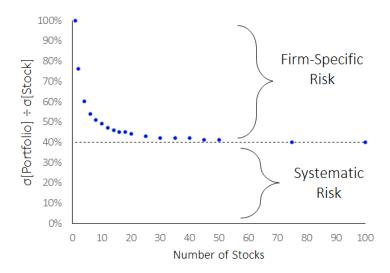
Estimating Covariances

• Use each data observation as a "scenario" with equal probability:

$$Cov[r_A, r_B] = \sum_{s} p(s) \times \{r_A(s) - \mathbb{E}[r_A]\} \times \{r_B(s) - \mathbb{E}[r_B]\}$$
$$\widehat{Cov}[r_A, r_B] = \frac{1}{T-1} \times \sum_{t=1}^{T} \{r_{A,t} - \bar{r}_A\} \times \{r_{B,t} - \bar{r}_B\}$$

- The number of estimates "explodes" (results are unreliable):
 - N = 50 securities $\implies 1,225$ covariance estimates (only 100 σ and μ estimates)
 - \circ N = 500 securities \Longrightarrow 124,750 covariance estimates

Systematic \times Firm-Specific Risk



Index Model: Structure

• Decomposing returns into two components:

$$r_{i,t} - r_f = \beta_i \cdot \underbrace{(r_{M,t} - r_f)}_{systematic} + \underbrace{\alpha_i + e_{i,t}}_{firm-specific}$$

$$\Downarrow$$

$$\mathbb{E} [r_{i,t}] = r_f + \alpha_i + \beta_i \cdot (\mathbb{E} [r_{M,t}] - r_f)$$

$$\sigma^2 [r_{i,t}] = \beta_i^2 \cdot \sigma^2 [r_{M,t}] + \sigma^2 [e_{i,t}]$$

 $Cov[r_A, r_B] = Cov[\beta_A \cdot (r_M - r_f) + e_A, \beta_B \cdot (r_M - r_f) + e_B]$

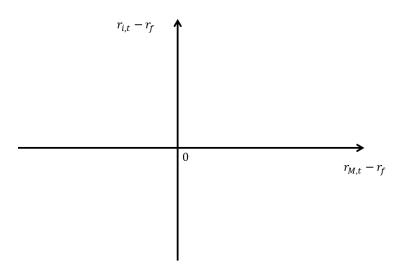
$$= \beta_{\boldsymbol{A}} \cdot \boldsymbol{\beta}_{\boldsymbol{B}} \cdot \sigma^2 \left[\boldsymbol{r}_{\boldsymbol{M},t} \right]$$

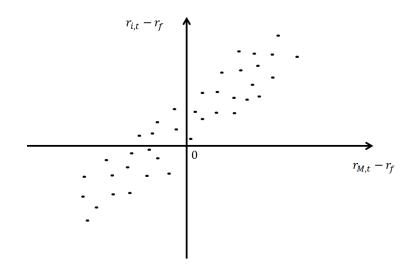
Index Model: Reduction in Number of Estimates

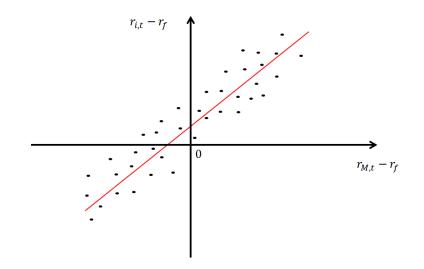
- With an index model with N assets, we need:
 - *N* estimates of α_i , β_i and $\sigma[e_{i,t}]$
 - 1 estimate $\mathbb{E}[r_{M,t}]$ and $\sigma^2[r_{M,t}]$
- The reduction in the number of estimates is substantial:

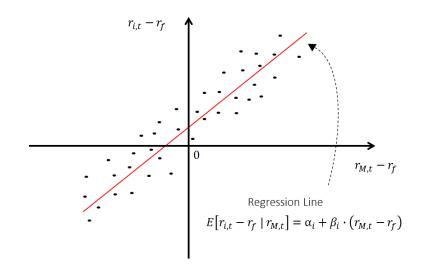
•
$$N = 50$$
 securities $\implies 1,355$ estimates

• N = 50 securities $\implies 152$ estimates (with index model)

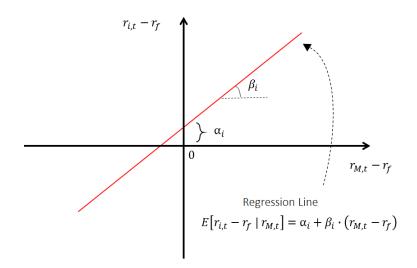




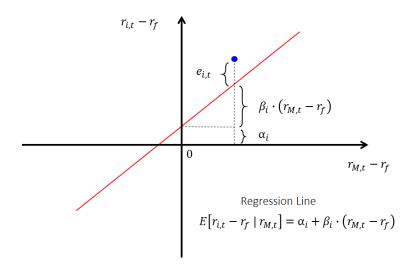




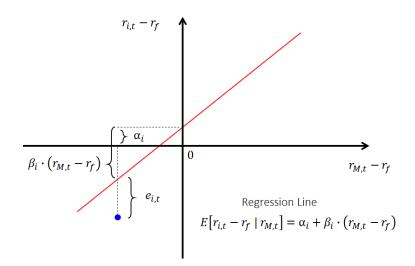
Index Model as a Regression: α_i and β_i



Index Model as a Regression: Decomposing $r_{i,t}$



Index Model as a Regression: Decomposing $r_{i,t}$



Index Model: Systematic \times Firm-Specific Risk

• Decomposing risk into two components:

$$\sigma^{2}[r_{i,t}] = \underbrace{\beta_{i}^{2} \cdot \sigma^{2}[r_{M,t}]}_{systematic \ risk} + \underbrace{\sigma^{2}[e_{i,t}]}_{firm-specific \ risk}$$

$$\Downarrow$$

$$R^{2} = \frac{\beta_{i}^{2} \cdot \sigma^{2}[r_{M,t}]}{\sigma^{2}[r_{i,t}]}$$

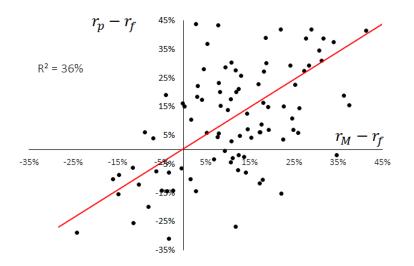
$$= \frac{\beta_{i}^{2} \cdot \sigma^{2}[r_{M,t}]}{\beta_{i}^{2} \cdot \sigma^{2}[r_{M,t}] + \sigma^{2}[e_{i,t}]}$$

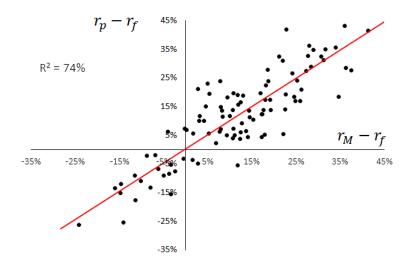
Index Model: Systematic \times Firm-Specific Risk

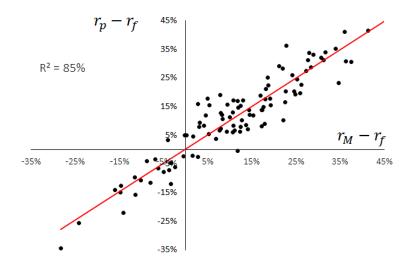
• When we form a (equal-weighted) portfolio $r_p = \frac{1}{N} \sum_{i=1}^{N} r_i$:

$$r_{p} - r_{f} = \underbrace{\left(\frac{1}{N}\sum_{i}\alpha_{i}\right)}_{\alpha_{p}} + \underbrace{\left(\frac{1}{N}\sum_{i}\beta_{i}\right)}_{\beta_{p}} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$= \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$\cong \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f})$$

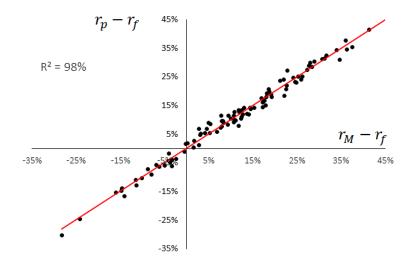
$$\downarrow \\ \sigma^2 \left[r_p \right] \cong \beta_p^2 \cdot \sigma^2 \left[r_M \right]$$





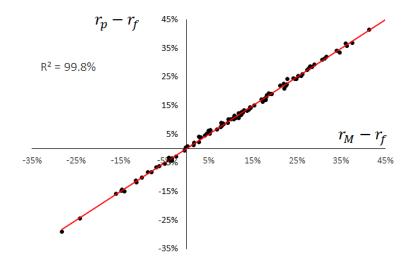


The Efficient Frontie

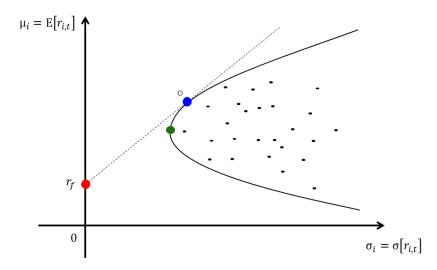


The Efficient Frontie

N = 1,000



Index Model: Finding the Tangency Portfolio



Index Model: Finding the Tangency Portfolio

• It turns out that (using the index model):

$$r_o = \underbrace{w_A \cdot r_A}_{Active} + \underbrace{(1 - w_A) \cdot r_M}_{Passive}$$

with

$$w_A^0 = rac{lpha_A/\sigma^2[e_A]}{(\mathbb{E}[r_M] - r_f)/\sigma_M^2}$$
 and $w_A = rac{w_A^0}{1 + w_A^0 \cdot (1 - \beta_A)}$

• Moreover, weight of asset *i* in the active portfolio is:

$$w_i^{\mathcal{A}} = \frac{\frac{\alpha_i}{\sigma^2[e_i]}}{\sum_i \frac{\alpha_i}{\sigma^2[e_i]}}$$

You are considering using an index model when estimating inputs for your portfolio optimization problem. All of the followings are advantages of this approach of estimating inputs, except:

- a) It reduces substantially the number of parameters to be estimated
- b) It creates a clear decomposition between systematic and firm-specific risk
- c) It breaks the optimal risky portfolio into a passive portfolio and an active position, which allows you to understand how you are deviating from the given index
- d) It provides you with estimates that rely on a lower number of assumptions about returns
- e) It provides a simple way to incorporate the fact that many events in the market affect several assets simultaneously

A Word of Caution Regarding Portfolio Theory

- Portfolio theory provides you with an extremely useful tool for portfolio formation. However:
 - "Garbage in, garbage out" principle
 - Portfolio Theory is silent about how to estimate $\mathbb{E}[r_t]$ and $\sigma[r_t]$. Forward looking estimates are key (security analysis)
 - Maximum Sharpe Ratio portfolio is very sensitive to model inputs (especially $\mathbb{E}[r_t]$)
 - The reality of institutional details needs to be incorporated (no short-sale; no leverage; portfolio similar to benchmark...)
 - Tail risk and other sources of risk are not being taken into account in the standard procedure

References