Module 3: Factor Models (BUSFIN 4221 - Investments)

Andrei S. Gonçalves¹

¹Finance Department The Ohio State University

Fall 2016

Outline

Overview

Capital Asset Pricing Model

Arbitrage Pricing Theory

Multifactor Models

Empirical Evidence

Module 1 - The Demand for Capital

Module 1 - The Supply of Capital

Module 1 - Investment Principle

$$PV_{t} = \sum_{h=1}^{\infty} \frac{\mathbb{E}_{t} \left[CF_{t+h} \right]}{\left(1 + dr_{t,h} \right)^{h}}$$

Module 2 - Portfolio Theory

This Module: Factor Models

trage Pricing Theory

Multifactor Mode

Empirical Evidence

Outline

Overview

Capital Asset Pricing Model

Arbitrage Pricing Theory

Multifactor Models

Empirical Evidence

rage Pricing Theor

This Section: CAPM

1

Capital Allocation Line

Capital Allocation Line

$$\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f} = \mathbb{E}[\mathbf{w}_{1} \cdot \mathbf{r}_{1} + \dots + \mathbf{w}_{N} \cdot \mathbf{r}_{N}] - \mathbf{r}_{f}$$

 $= \underbrace{w_1 \cdot \left(\mathbb{E}\left[r_1\right] - r_f\right)}_{H_1} + .$

Contribution of Asset 1

$$\underbrace{w_N \cdot \left(\mathbb{E}\left[r_N\right] - r_f\right)}$$

Contribution of Asset N

 $\begin{aligned} \tau^{2} [r_{o}] &= Cov [r_{o}, r_{o}] \\ &= Cov [w_{1} \cdot r_{1} + ... + w_{N} \cdot r_{N}, r_{o}] \\ &= \underbrace{w_{1} \cdot Cov [r_{1}, r_{o}]}_{Contribution of Asset 1} + ... + \underbrace{w_{N} \cdot Cov [r_{N}, r_{o}]}_{Contribution of Asset 1} \end{aligned}$

$$\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f} = \mathbb{E}[w_{1} \cdot \mathbf{r}_{1} + \dots + w_{N} \cdot \mathbf{r}_{N}] - \mathbf{r}_{f}$$
$$= \underbrace{w_{1} \cdot (\mathbb{E}[\mathbf{r}_{1}] - \mathbf{r}_{f})}_{Contribution of Asset 1} + \dots + \underbrace{w_{N} \cdot (\mathbb{E}[\mathbf{r}_{N}] - \mathbf{r}_{f})}_{Contribution of Asset N}$$

$$[r_{o}] = Cov [r_{o}, r_{o}]$$

$$= Cov [w_{1} \cdot r_{1} + ... + w_{N} \cdot r_{N}, r_{o}]$$

$$= \underbrace{w_{1} \cdot Cov [r_{1}, r_{o}]}_{Contribution of Asset 1} + ... + \underbrace{w_{N} \cdot Cov [r_{N}, r_{o}]}_{Contribution of Asset 1}$$

$$\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f} = \mathbb{E}[\mathbf{w}_{1} \cdot \mathbf{r}_{1} + \dots + \mathbf{w}_{N} \cdot \mathbf{r}_{N}] - \mathbf{r}_{f}$$
$$= \underbrace{\mathbf{w}_{1} \cdot (\mathbb{E}[\mathbf{r}_{1}] - \mathbf{r}_{f})}_{Contribution of Asset 1} + \dots + \underbrace{\mathbf{w}_{N} \cdot (\mathbb{E}[\mathbf{r}_{N}] - \mathbf{r}_{f})}_{Contribution of Asset N}$$

 $\sigma^{2}\left[\mathbf{r_{o}}\right] = \mathit{Cov}\left[\mathbf{r_{o}}, \mathbf{r_{o}}\right]$

$$= Cov \left[w_1 \cdot r_1 + \ldots + w_N \cdot r_N, r_o \right]$$

ontribution of Asset 1 Contribution of Asset N

$$\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f} = \mathbb{E}[w_{1} \cdot \mathbf{r}_{1} + \dots + w_{N} \cdot \mathbf{r}_{N}] - \mathbf{r}_{f}$$
$$= \underbrace{w_{1} \cdot (\mathbb{E}[\mathbf{r}_{1}] - \mathbf{r}_{f})}_{Contribution of Asset 1} + \dots + \underbrace{w_{N} \cdot (\mathbb{E}[\mathbf{r}_{N}] - \mathbf{r}_{f})}_{Contribution of Asset N}$$

$$\sigma^{2}[r_{o}] = Cov[r_{o}, r_{o}]$$

$$= Cov[w_{1} \cdot r_{1} + ... + w_{N} \cdot r_{N}, r_{o}]$$

$$= \underbrace{w_{1} \cdot Cov[r_{1}, r_{o}]}_{Contribution of Asset 1} + ... + \underbrace{w_{N} \cdot Cov[r_{N}, r_{o}]}_{Contribution of Asset 1}$$

$$\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f} = \mathbb{E}[w_{1} \cdot \mathbf{r}_{1} + \dots + w_{N} \cdot \mathbf{r}_{N}] - \mathbf{r}_{f}$$
$$= \underbrace{w_{1} \cdot (\mathbb{E}[\mathbf{r}_{1}] - \mathbf{r}_{f})}_{Contribution of Asset 1} + \dots + \underbrace{w_{N} \cdot (\mathbb{E}[\mathbf{r}_{N}] - \mathbf{r}_{f})}_{Contribution of Asset N}$$

$$\sigma^{2}[r_{o}] = Cov[r_{o}, r_{o}]$$

$$= Cov[w_{1} \cdot r_{1} + ... + w_{N} \cdot r_{N}, r_{o}]$$

$$= \underbrace{w_{1} \cdot Cov[r_{1}, r_{o}]}_{Contribution of Asset 1} + ... + \underbrace{w_{N} \cdot Cov[r_{N}, r_{o}]}_{Contribution of Asset N}$$

Asset *i* Contribution to Portfolio Reward-to-Risk Ratio

$$\frac{\mathbb{E}[r_{o}] - r_{f}}{\sigma^{2}[r_{o}]} = \frac{w_{i} \cdot (\mathbb{E}[r_{i}] - r_{f})}{w_{i} \cdot Cov[r_{i}, r_{o}]}$$
$$= \frac{\mathbb{E}[r_{i}] - r_{f}}{Cov[r_{i}, r_{o}]}$$
$$\Downarrow$$
$$\mathbb{E}[r_{i}] - r_{f} = \frac{Cov[r_{i}, r_{o}]}{\sigma^{2}[r_{o}]} (\mathbb{E}[r_{o}] - r_{f})$$
$$= \beta_{i} \cdot (\mathbb{E}[r_{o}] - r_{f})$$

$$\frac{\mathbb{E}[r_o] - r_f}{\sigma^2[r_o]} = \frac{w_i \cdot (\mathbb{E}[r_i] - r_f)}{w_i \cdot Cov[r_i, r_o]}$$
$$= \frac{\mathbb{E}[r_i] - r_f}{Cov[r_i, r_o]}$$
$$\Downarrow$$
$$\mathbb{E}[r_i] - r_f = \frac{Cov[r_i, r_o]}{\sigma^2[r_o]} (\mathbb{E}[r_o] - r_f)$$

Asset *i* Contribution to Portfolio Reward-to-Risk Ratio

$$\frac{\mathbb{E}[r_o] - r_f}{\sigma^2[r_o]} = \frac{w_i \cdot (\mathbb{E}[r_i] - r_f)}{w_i \cdot Cov[r_i, r_o]}$$
$$= \frac{\mathbb{E}[r_i] - r_f}{Cov[r_i, r_o]}$$

$$\mathbb{E}[r_i] - r_f = \frac{Cov[r_i, r_o]}{\sigma^2[r_o]} (\mathbb{E}[r_o] - r_f)$$
$$= \beta_i \cdot (\mathbb{E}[r_o] - r_f)$$

$$\frac{\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f}}{\sigma^{2}[\mathbf{r}_{o}]} = \frac{w_{i} \cdot (\mathbb{E}[\mathbf{r}_{i}] - \mathbf{r}_{f})}{w_{i} \cdot Cov[\mathbf{r}_{i}, \mathbf{r}_{o}]}$$
$$= \frac{\mathbb{E}[\mathbf{r}_{i}] - \mathbf{r}_{f}}{Cov[\mathbf{r}_{i}, \mathbf{r}_{o}]}$$
$$\Downarrow$$
$$\mathbb{E}[\mathbf{r}_{i}] - \mathbf{r}_{f} = \frac{Cov[\mathbf{r}_{i}, \mathbf{r}_{o}]}{\sigma^{2}[\mathbf{r}_{o}]} (\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f})$$
$$= \beta_{i} \cdot (\mathbb{E}[\mathbf{r}_{o}] - \mathbf{r}_{f})$$

$$\frac{\mathbb{E}[r_o] - r_f}{\sigma^2 [r_o]} = \frac{w_i \cdot (\mathbb{E}[r_i] - r_f)}{w_i \cdot Cov [r_i, r_o]}$$
$$= \frac{\mathbb{E}[r_i] - r_f}{Cov [r_i, r_o]}$$
$$\Downarrow$$
$$\mathbb{E}[r_i] - r_f = \frac{Cov [r_i, r_o]}{\sigma^2 [r_o]} (\mathbb{E}[r_o] - r_f)$$
$$= \beta_i \cdot (\mathbb{E}[r_o] - r_f)$$

CAPM: The Argument

CAPM: The Argument

- $\beta_i = Cov(r_i, r_M) / \sigma^2[r_M]$
- $\uparrow \beta_i \Longrightarrow \uparrow \mathbb{E}[r_i]$:
- $\sigma^2[r]$ is not the right measure of risk. β is
- β_i controls security *i* contribution to $\sigma^2[r_M]$

•
$$\beta_i = Cov(r_i, r_M) / \sigma^2[r_M]$$

- $\uparrow \beta_i \Longrightarrow \uparrow \mathbb{E}[r_i]$:
- $\sigma^2[r]$ is not the right measure of risk. β is
- β_i controls security *i* contribution to $\sigma^2[r_M]$

•
$$\beta_i = Cov(r_i, r_M) / \sigma^2[r_M]$$

- $\uparrow \beta_i \Longrightarrow \uparrow \mathbb{E}[r_i]$:
- $\sigma^2[r]$ is not the right measure of risk. β is
- β_i controls security *i* contribution to $\sigma^2[r_M]$

•
$$\beta_i = Cov(r_i, r_M) / \sigma^2[r_M]$$

- $\uparrow \beta_i \Longrightarrow \uparrow \mathbb{E}[r_i]$:
- $\sigma^2[r]$ is not the right measure of risk. β is

• β_i controls security *i* contribution to $\sigma^2[r_M]$

•
$$\beta_i = Cov(r_i, r_M) / \sigma^2[r_M]$$

- $\uparrow \beta_i \Longrightarrow \uparrow \mathbb{E}[r_i]$:
- $\sigma^2[r]$ is not the right measure of risk. β is
- β_i controls security *i* contribution to $\sigma^2 [r_M]$

7

7

- When investors decide on their complete portfolios by maximizing their "Happiness" then: E [r_M] − r_f = A · σ²_M
- This means that the Risk Premium:
 - Increases with market volatility:
 - $\uparrow \sigma_M \rightarrow \uparrow \mathbb{E}[m] r$
 - Increases as investors get more risk averses
 - $\uparrow A \rightarrow \uparrow \mathbb{E}[m] n$

- When investors decide on their complete portfolios by maximizing their "Happiness" then: $\mathbb{E}[r_M] r_f = A \cdot \sigma_M^2$
- This means that the Risk Premium:

- Increases as investors get more risk averse:
 - $\uparrow A \rightarrow \uparrow E[m] n$

- When investors decide on their complete portfolios by maximizing their "Happiness" then: $\mathbb{E}[r_M] r_f = A \cdot \sigma_M^2$
- This means that the Risk Premium:

Increases with market volatility:

 $\uparrow \sigma_M \quad \Rightarrow \quad \uparrow \mathbb{E}\left[r_M\right] - r_f$

Increases as investors get more risk averse:

 $\uparrow A \Rightarrow \uparrow \mathbb{E}[r_M] - r_f$

- When investors decide on their complete portfolios by maximizing their "Happiness" then: $\mathbb{E}[r_M] r_f = A \cdot \sigma_M^2$
- This means that the Risk Premium:
 - Increases with market volatility:

 $\uparrow \sigma_{M} \quad \Rightarrow \quad \uparrow \mathbb{E}\left[\mathbf{r}_{M}\right] - \mathbf{r}_{f}$

Increases as investors get more risk averse:

 $\uparrow A \Rightarrow \uparrow \mathbb{E}[r_M] - r_f$
CAPM: The Risk-Premium

- When investors decide on their complete portfolios by maximizing their "Happiness" then: $\mathbb{E}[r_M] r_f = A \cdot \sigma_M^2$
- This means that the Risk Premium:
 - Increases with market volatility:

 $\uparrow \sigma_{M} \quad \Rightarrow \quad \uparrow \mathbb{E}\left[\mathbf{r}_{M}\right] - \mathbf{r}_{f}$

• Increases as investors get more risk averse:

$$\uparrow A \Rightarrow \uparrow \mathbb{E}[\mathbf{r}_{M}] - \mathbf{r}_{f}$$

Suppose the CAPM holds: $\mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f)$. Consider two stocks, A and B, with $\mathbb{E}[r_A] > \mathbb{E}[r_B]$ at time *t*. Between *t* and t + 1 there is an increase in the volatility of the market portfolio, which induces an increase the market Risk-Premium (nothing else changes). What can you say about the expected return gap $\mathbb{E}[r_A] - \mathbb{E}[r_B]$?

- a) It will increase from t to t+1
- **b)** It will decrease from t to t + 1.
- c) It will remain the same from t to t + 1 (β 's did not change).
- d) It will revert (become negative) from t to t + 1 since stock A will be hit harder.
- e) It will become zero at t + 1.

Suppose the CAPM holds: $\mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f)$. Consider two stocks, A and B, with $\mathbb{E}[r_A] > \mathbb{E}[r_B]$ at time *t*. Between *t* and t + 1 there is an increase in the volatility of the market portfolio, which induces an increase the market Risk-Premium (nothing else changes). What can you say about the expected return gap $\mathbb{E}[r_A] - \mathbb{E}[r_B]$?

- a) It will increase from t to t+1
- **b)** It will decrease from t to t + 1.
- c) It will remain the same from t to t + 1 (β 's did not change).
- d) It will revert (become negative) from t to t + 1 since stock A will be hit harder.
- e) It will become zero at t + 1.

Index Model : $r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$ and CAPM : $\mathbb{E}[r_i] - r_f = \beta_i \cdot (\mathbb{E}[r_M] - r_f)$ \downarrow $\alpha_i = 0$

The usual systematic x firm-specific risk decomposition holds:

$$\sigma^2[\eta] = \beta_1^2 \cdot \sigma^2[\eta_0] + \sigma^2[\eta_0]$$

Index Model : $r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$ and CAPM : $\mathbb{E}[r_i] - r_f = \beta_i \cdot (\mathbb{E}[r_M] - r_f)$ ψ $\alpha_i = 0$

The usual systematic x firm-specific risk decomposition holds:

$$\sigma^2[n] = \beta_1^2 \cdot \sigma^2[n_0] + \sigma^2[n_0]$$

Index Model : $r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$ and CAPM : $\mathbb{E}[r_i] - r_f = \beta_i \cdot (\mathbb{E}[r_M] - r_f)$ \downarrow $\alpha_i = 0$

The usual systematic x firm-specific risk decomposition holds:

$$\sigma^2 [\alpha] = \beta_1^2 \cdot \sigma^2 [\alpha_0] + \sigma^2 [\alpha_1]$$

age Pricing Theory

Empirical Evidence

CAPM: Relation to Index Model

Index Model :
$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$$

and
CAPM : $\mathbb{E}[r_i] - r_f = \beta_i \cdot (\mathbb{E}[r_M] - r_f)$
 \downarrow
 $\alpha_i = 0$

• The usual systematic x firm-specific risk decomposition holds:

$$\sigma^{2}[\mathbf{r}_{i}] = \beta_{i}^{2} \cdot \sigma^{2}[\mathbf{r}_{M}] + \sigma^{2}[\mathbf{e}_{i}]$$

Index Model :
$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$$

and
CAPM : $\mathbb{E}[r_i] - r_f = \beta_i \cdot (\mathbb{E}[r_M] - r_f)$
 \downarrow
 $\alpha_i = 0$

• The usual systematic x firm-specific risk decomposition holds:

$$\sigma^{2}[r_{i}] = \beta_{i}^{2} \cdot \sigma^{2}[r_{M}] + \sigma^{2}[e_{i}]$$

CAPM: β Effect on Portfolio Volatility

CAPM: β Effect on Portfolio Volatility

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Portfolio Management: Risk Adjusted Returns

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_f = \alpha_i + \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f)$$

• You can use the simplest approach:

$$\widehat{\alpha}_i = \overline{\mathbf{r}_i - \mathbf{r}_f} - \widehat{\beta}_i \cdot \overline{\mathbf{r}_M - \mathbf{r}_f}$$

$$\widehat{\alpha}_{i} = \widehat{\mathbb{E}}\left[r_{i} - r_{f}\right] - \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}\left[r_{M} - r_{f}\right]$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Portfolio Management: Risk Adjusted Returns

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_f = \alpha_i + \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f)$$

• You can use the simplest approach:

$$\widehat{\alpha}_i = \overline{\mathbf{r}_i - \mathbf{r}_f} - \widehat{\beta}_i \cdot \overline{\mathbf{r}_M - \mathbf{r}_f}$$

$$\widehat{\alpha}_{i} = \widehat{\mathbb{E}}\left[r_{i} - r_{f}\right] - \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}\left[r_{M} - r_{f}\right]$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Portfolio Management: Risk Adjusted Returns

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_{\mathbf{f}} = \alpha_i + \beta_i \cdot (\mathbb{E}[\mathbf{r}_{\mathbf{M}}] - \mathbf{r}_{\mathbf{f}})$$

You can use the simplest approach:

$$\widehat{\alpha}_i = \overline{r_i - r_f} - \widehat{\beta}_i \cdot \overline{r_M - r_f}$$

$$\widehat{\alpha}_{i} = \widehat{\mathbb{E}}\left[r_{i} - r_{f}\right] - \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}\left[r_{M} - r_{f}\right]$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Portfolio Management: Risk Adjusted Returns

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_{\mathbf{f}} = \alpha_i + \beta_i \cdot (\mathbb{E}[\mathbf{r}_{\mathbf{M}}] - \mathbf{r}_{\mathbf{f}})$$

• You can use the simplest approach:

$$\widehat{\alpha}_i = \overline{\mathbf{r}_i - \mathbf{r}_f} - \widehat{\beta}_i \cdot \overline{\mathbf{r}_M - \mathbf{r}_f}$$

$$\widehat{\alpha}_{i} = \widehat{\mathbb{E}}\left[r_{i} - r_{f}\right] - \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}\left[r_{M} - r_{f}\right]$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Portfolio Management: Risk Adjusted Returns

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_{\mathbf{f}} = \alpha_i + \beta_i \cdot (\mathbb{E}[\mathbf{r}_{\mathbf{M}}] - \mathbf{r}_{\mathbf{f}})$$

• You can use the simplest approach:

$$\widehat{\alpha}_i = \overline{\mathbf{r}_i - \mathbf{r}_f} - \widehat{\beta}_i \cdot \overline{\mathbf{r}_M - \mathbf{r}_f}$$

$$\widehat{\alpha}_{i} = \widehat{\mathbb{E}}\left[\mathbf{r}_{i} - \mathbf{r}_{f}\right] - \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}\left[\mathbf{r}_{M} - \mathbf{r}_{f}\right]$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Net Present Value Applications: Discount Rate

$$PV_t = \sum_{h=1}^{T} \frac{\mathbb{E}_t \left[CF_{t+h} \right]}{\left(1 + dr_{t,h} \right)^h}$$

$$(1 + dr_{t,h})^{h} = \left(1 + \widehat{\mathbb{E}}[r_{i}]\right)^{h}$$
$$= \left(1 + r_{f} + \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}[r_{M} - r_{f}]\right)^{h}$$
$$\cong \left(1 + r_{f} + \widehat{\beta}_{i} \cdot 6\%\right)^{h}$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Net Present Value Applications: Discount Rate

$$PV_t = \sum_{h=1}^{T} \frac{\mathbb{E}_t \left[CF_{t+h} \right]}{\left(1 + dr_{t,h} \right)^h}$$

$$(1 + dr_{t,h})^{h} = (1 + \widehat{\mathbb{E}}[r_{i}])^{h}$$
$$= (1 + r_{f} + \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}[r_{M} - r_{f}])^{h}$$
$$\cong (1 + r_{f} + \widehat{\beta}_{i} \cdot 6\%)^{h}$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Net Present Value Applications: Discount Rate

$$PV_t = \sum_{h=1}^{T} \frac{\mathbb{E}_t \left[CF_{t+h} \right]}{\left(1 + dr_{t,h} \right)^h}$$

$$(1 + dr_{t,h})^{h} = (1 + \widehat{\mathbb{E}}[r_{i}])^{h}$$
$$= (1 + r_{f} + \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}[r_{M} - r_{f}])^{h}$$
$$\cong (1 + r_{f} + \widehat{\beta}_{i} \cdot 6\%)^{h}$$

- There are several CAPM applications, but two are particularly important since they are often used by market participants
- Net Present Value Applications: Discount Rate

$$PV_t = \sum_{h=1}^{T} \frac{\mathbb{E}_t \left[CF_{t+h} \right]}{\left(1 + dr_{t,h} \right)^h}$$

$$(1 + dr_{t,h})^{h} = (1 + \widehat{\mathbb{E}}[r_{i}])^{h}$$
$$= (1 + r_{f} + \widehat{\beta}_{i} \cdot \widehat{\mathbb{E}}[r_{M} - r_{f}])^{h}$$
$$\cong (1 + r_{f} + \widehat{\beta}_{i} \cdot 6\%)^{h}$$

- For the CAPM to hold, we need active investors in the market (using Portfolio Theory)
- But the main prediction of the CAPM is that the market portfolio is efficient
- Most people can easily buy an ETF that mimics the (stock) market portfolio
- There is no risk-adjusted return from being active. But there are costs (assumed away by the theory)
- Why would anyone be an active investor if the CAPM were true?

- For the CAPM to hold, we need active investors in the market (using Portfolio Theory)
- But the main prediction of the CAPM is that the market portfolio is efficient
- Most people can easily buy an ETF that mimics the (stock) market portfolio
- There is no risk-adjusted return from being active. But there are costs (assumed away by the theory)
- Why would anyone be an active investor if the CAPM were true?

- For the CAPM to hold, we need active investors in the market (using Portfolio Theory)
- But the main prediction of the CAPM is that the market portfolio is efficient
- Most people can easily buy an ETF that mimics the (stock) market portfolio
- There is no risk-adjusted return from being active. But there are costs (assumed away by the theory)
- Why would anyone be an active investor if the CAPM were true?

- For the CAPM to hold, we need active investors in the market (using Portfolio Theory)
- But the main prediction of the CAPM is that the market portfolio is efficient
- Most people can easily buy an ETF that mimics the (stock) market portfolio
- There is no risk-adjusted return from being active. But there are costs (assumed away by the theory)
- Why would anyone be an active investor if the CAPM were true?

- For the CAPM to hold, we need active investors in the market (using Portfolio Theory)
- But the main prediction of the CAPM is that the market portfolio is efficient
- Most people can easily buy an ETF that mimics the (stock) market portfolio
- There is no risk-adjusted return from being active. But there are costs (assumed away by the theory)
- Why would anyone be an active investor if the CAPM were true?

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- Complete Agreement (or "homogeneous expectations")!
- No private information!
- No taxes!
- Unlimited borrowing at the risk-free rate!
- No costs on transactions or information gathering/processing!
- Investors have same (single period) horizon!
- Investors are rational and use Portfolio Theory!
- For applications, we also need to have the market portfolio...

- There are too many (false) assumptions for the CAPM to hold
- The question you should ask is not whether the CAPM holds or not. Instead you should ask: when is it reasonable to use it?
- As any model in Finance, when you blindly apply the CAPM you might face serious issues: mismeasure risk, mismeasure expected return, invest in unreasonable projects...
- Researchers have been working on improving the CAPM over more than three decades. Much progress has been made.
- Yet, most models keep the key insight from the CAPM: systematic risk matters!

- There are too many (false) assumptions for the CAPM to hold
- The question you should ask is not whether the CAPM holds or not. Instead you should ask: when is it reasonable to use it?
- As any model in Finance, when you blindly apply the CAPM you might face serious issues: mismeasure risk, mismeasure expected return, invest in unreasonable projects...
- Researchers have been working on improving the CAPM over more than three decades. Much progress has been made.
- Yet, most models keep the key insight from the CAPM: systematic risk matters!

- There are too many (false) assumptions for the CAPM to hold
- The question you should ask is not whether the CAPM holds or not. Instead you should ask: when is it reasonable to use it?
- As any model in Finance, when you blindly apply the CAPM you might face serious issues: mismeasure risk, mismeasure expected return, invest in unreasonable projects...
- Researchers have been working on improving the CAPM over more than three decades. Much progress has been made.
- Yet, most models keep the key insight from the CAPM: systematic risk matters!

- There are too many (false) assumptions for the CAPM to hold
- The question you should ask is not whether the CAPM holds or not. Instead you should ask: when is it reasonable to use it?
- As any model in Finance, when you blindly apply the CAPM you might face serious issues: mismeasure risk, mismeasure expected return, invest in unreasonable projects...
- Researchers have been working on improving the CAPM over more than three decades. Much progress has been made.
- Yet, most models keep the key insight from the CAPM: systematic risk matters!
Use the CAPM in a Sensible way

- There are too many (false) assumptions for the CAPM to hold
- The question you should ask is not whether the CAPM holds or not. Instead you should ask: when is it reasonable to use it?
- As any model in Finance, when you blindly apply the CAPM you might face serious issues: mismeasure risk, mismeasure expected return, invest in unreasonable projects...
- Researchers have been working on improving the CAPM over more than three decades. Much progress has been made.
- Yet, most models keep the key insight from the CAPM: systematic risk matters!

Which of the following statements is false regarding the CAPM?

- a) The CAPM links $\mathbb{E}[r_i]$ and systematic risk, measured by $\beta_i = Cov[r_i, r_M]/\sigma^2[r_M]$, directly. It says that asset A has higher expected return than asset B if and only if $\beta_A > \beta_B$
- b) It is possible to have a world in which all investors use Portfolio Theory to decide on their portfolios and, yet, the CAPM predictions are false
- c) Within the CAPM, the best risk measure for an asset or portfolio is its volatility: σ² [r]
- d) The CAPM prediction for $\mathbb{E}[r_i]$ can be used as a discount rate to be applied in Net Present Value (NPV) applications
- e) The CAPM requires investors to use the same inputs when optimizing their portfolios

Which of the following statements is false regarding the CAPM?

- a) The CAPM links $\mathbb{E}[r_i]$ and systematic risk, measured by $\beta_i = Cov[r_i, r_M]/\sigma^2[r_M]$, directly. It says that asset A has higher expected return than asset B if and only if $\beta_A > \beta_B$
- b) It is possible to have a world in which all investors use Portfolio Theory to decide on their portfolios and, yet, the CAPM predictions are false
- c) Within the CAPM, the best risk measure for an asset or portfolio is its volatility: σ² [r]
- d) The CAPM prediction for $\mathbb{E}[r_i]$ can be used as a discount rate to be applied in Net Present Value (NPV) applications
- e) The CAPM requires investors to use the same inputs when optimizing their portfolios

Outline

Overview

Capital Asset Pricing Model

Arbitrage Pricing Theory

Multifactor Models

Empirical Evidence

This Section: APT

"No free lunch" rule in Wall Street (+ index model) implies:

$$\mathbb{E}[\mathbf{r}_{\rho}] = \mathbf{r}_{f} + \beta_{\rho} \cdot (\mathbb{E}[\mathbf{r}_{M}] - \mathbf{r}_{f})$$

for any "well diversified" portfolio p

bet A

Systematic × Firm-Specific Risk

Source: "Statman (1987) - How many stocks make a diversified portfolio"

Systematic \times Firm-Specific Risk

Assume an index model holds:

Systematic \times Firm-Specific Risk

• Assume an index model holds:

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$$

ystematic risk

Systematic \times Firm-Specific Risk

• Assume an index model holds:

$$r_{i,t} - r_{f} = \alpha_{i} + \beta_{i} \cdot (r_{M,t} - r_{f}) + e_{i,t}$$

$$\Downarrow$$

$$\sigma^{2}[r_{i,t}] = \underbrace{\beta_{i}^{2} \cdot \sigma^{2}[r_{M,t}]}_{systematic \ risk} + \underbrace{\sigma^{2}[e_{i,t}]}_{firm-specific \ risk}$$

Models Empirical Evide

Firm-Specific Risk Vanishes in Well Diversified Portfolios

• When we form a (equal-weighted) portfolio $r_p = \frac{1}{N} \sum_{i=1}^{N} r_i$:

$$r_{p} - r_{f} = \underbrace{\left(\frac{1}{N}\sum_{i}\alpha_{i}\right)}_{\alpha_{p}} + \underbrace{\left(\frac{1}{N}\sum_{i}\beta_{i}\right)}_{\beta_{p}} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$= \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$\downarrow$$
$$r_{p} - r_{f} \cong \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f})$$

Firm-Specific Risk Vanishes in Well Diversified Portfolios

• When we form a (equal-weighted) portfolio $r_p = \frac{1}{N} \sum_{i=1}^{N} r_i$:

$$r_{p} - r_{f} = \underbrace{\left(\frac{1}{N}\sum_{i}\alpha_{i}\right)}_{\alpha_{p}} + \underbrace{\left(\frac{1}{N}\sum_{i}\beta_{i}\right)}_{\beta_{p}} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$= \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$\downarrow$$
$$r_{p} - r_{f} \cong \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f})$$

Firm-Specific Risk Vanishes in Well Diversified Portfolios

• When we form a (equal-weighted) portfolio $r_p = \frac{1}{N} \sum_{i=1}^{N} r_i$:

$$r_{p} - r_{f} = \underbrace{\left(\frac{1}{N}\sum_{i}\alpha_{i}\right)}_{\alpha_{p}} + \underbrace{\left(\frac{1}{N}\sum_{i}\beta_{i}\right)}_{\beta_{p}} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$= \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$

 $r_{p} - r_{f} \cong \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f})$

Firm-Specific Risk Vanishes in Well Diversified Portfolios

• When we form a (equal-weighted) portfolio $r_p = \frac{1}{N} \sum_{i=1}^{N} r_i$:

$$r_{p} - r_{f} = \underbrace{\left(\frac{1}{N}\sum_{i}\alpha_{i}\right)}_{\alpha_{p}} + \underbrace{\left(\frac{1}{N}\sum_{i}\beta_{i}\right)}_{\beta_{p}} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$= \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f}) + \left(\frac{1}{N}\sum_{i}e_{i}\right)$$
$$\Downarrow$$
$$r_{p} - r_{f} \cong \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f})$$

N = 5

N = 10

N = 100

Multifactor Mode

N = 1,000

Creating an Arbitrage Strategy

• For a well diversified portfolio, p, we have:

$$r_p - r_f = \alpha_p + \beta_p \cdot (r_M - r_f)$$
$$r_M - r_f = 0 + 1 \cdot (r_M - r_f)$$

$$\beta_z = w_p \cdot \beta_p + (1 - w_p) \cdot 1 = 0$$
$$\downarrow$$
$$w_p = \frac{1}{1 - \beta_p}$$

Creating an Arbitrage Strategy

• For a well diversified portfolio, p, we have:

$$r_{p} - r_{f} = \alpha_{p} + \beta_{p} \cdot (r_{M} - r_{f})$$
$$r_{M} - r_{f} = 0 + 1 \cdot (r_{M} - r_{f})$$

Let's create a portfolio, r_z = w_p ⋅ r_p + (1 − w_p) ⋅ r_M, with zero systematic risk:

$$\beta_z = w_p \cdot \beta_p + (1 - w_p) \cdot 1 = 0$$
$$\downarrow$$
$$w_p = \frac{1}{1 - \beta_p}$$

Creating an Arbitrage Strategy

• For a well diversified portfolio, p, we have:

$$r_p - r_f = \alpha_p + \beta_p \cdot (r_M - r_f)$$
$$r_M - r_f = 0 + 1 \cdot (r_M - r_f)$$

Let's create a portfolio, r_z = w_p ⋅ r_p + (1 − w_p) ⋅ r_M, with zero systematic risk:

$$\beta_z = w_p \cdot \beta_p + (1 - w_p) \cdot 1 = 0$$
$$\downarrow$$
$$w_p = \frac{1}{1 - \beta_p}$$

Creating an Arbitrage Strategy

• For a well diversified portfolio, p, we have:

$$r_p - r_f = \alpha_p + \beta_p \cdot (r_M - r_f)$$
$$r_M - r_f = 0 + 1 \cdot (r_M - r_f)$$

• Let's create a portfolio, $r_z = w_p \cdot r_p + (1 - w_p) \cdot r_M$, with zero systematic risk:

$$\beta_z = w_p \cdot \beta_p + (1 - w_p) \cdot 1 = 0$$
$$\downarrow$$
$$w_p = \frac{1}{1 - \beta_p}$$

Creating an Arbitrage Strategy

• For a well diversified portfolio, p, we have:

$$r_p - r_f = \alpha_p + \beta_p \cdot (r_M - r_f)$$
$$r_M - r_f = 0 + 1 \cdot (r_M - r_f)$$

• Let's create a portfolio, $r_z = w_p \cdot r_p + (1 - w_p) \cdot r_M$, with zero systematic risk:

Creating an Arbitrage Strategy

• For a well diversified portfolio, p, we have:

$$r_p - r_f = \alpha_p + \beta_p \cdot (r_M - r_f)$$
$$r_M - r_f = 0 + 1 \cdot (r_M - r_f)$$

• Let's create a portfolio, $r_z = w_p \cdot r_p + (1 - w_p) \cdot r_M$, with zero systematic risk:

Creating an Arbitrage Strategy

• Our portfolio, r_z , has $\beta_z = 0$ and $\alpha_z = w_p \cdot \alpha_p$. Hence:

$$r_z - r_f = \alpha_z + \beta_z \cdot (r_M - r_f)$$
$$= \alpha_z$$
$$\Downarrow$$
$$r_z = r_f + \alpha_z$$
$$r_z - r_f = \alpha_z + \beta_z \cdot (r_M - r_f)$$

$$r_z = r_f + \alpha_z$$

- We just created a risk-free asset paying an interest rate higher than the risk-free rate (lower if $\alpha_z < 0$)
- This cannot be sustainable (smart investors will arbitrage that difference away by taking contrary positions on the r_f and r_z)
- As a consequence, α_z is driven to zero. Of course, α_z depends only on α_p, which means that α_p = 0

$$r_{z} - r_{f} = \alpha_{z} + \beta_{z} \cdot (r_{M} - r_{f})$$
$$= \alpha_{z}$$
$$\downarrow$$

- We just created a risk-free asset paying an interest rate higher than the risk-free rate (lower if α_z < 0)
- This cannot be sustainable (smart investors will arbitrage that difference away by taking contrary positions on the r_f and r_z)
- As a consequence, α_z is driven to zero. Of course, α_z depends only on α_p, which means that α_p = 0

$$r_{z} - r_{f} = \alpha_{z} + \beta_{z} \cdot (r_{M} - r_{f})$$
$$= \alpha_{z}$$
$$\Downarrow$$
$$r_{z} = r_{f} + \alpha_{z}$$

- We just created a risk-free asset paying an interest rate higher than the risk-free rate (lower if α_z < 0)
- This cannot be sustainable (smart investors will arbitrage that difference away by taking contrary positions on the r_f and r_z)
- As a consequence, α_z is driven to zero. Of course, α_z depends only on α_p, which means that α_p = 0

age Pricing Theory

Creating an Arbitrage Strategy

$$r_{z} - r_{f} = \alpha_{z} + \beta_{z} \cdot (r_{M} - r_{f})$$
$$= \alpha_{z}$$
$$\Downarrow$$
$$r_{z} = r_{f} + \alpha_{z}$$

- We just created a risk-free asset paying an interest rate higher than the risk-free rate (lower if $\alpha_z < 0$)
- This cannot be sustainable (smart investors will arbitrage that difference away by taking contrary positions on the r_f and r_z)
- As a consequence, α_z is driven to zero. Of course, α_z depends only on α_p, which means that α_p = 0

$$r_{z} - r_{f} = \alpha_{z} + \beta_{z} \cdot (r_{M} - r_{f})$$
$$= \alpha_{z}$$
$$\Downarrow$$
$$r_{z} = r_{f} + \alpha_{z}$$

- We just created a risk-free asset paying an interest rate higher than the risk-free rate (lower if α_z < 0)
- This cannot be sustainable (smart investors will arbitrage that difference away by taking contrary positions on the r_f and r_z)
- As a consequence, α_z is driven to zero. Of course, α_z depends only on α_p, which means that α_p = 0

$$r_{z} - r_{f} = \alpha_{z} + \beta_{z} \cdot (r_{M} - r_{f})$$
$$= \alpha_{z}$$
$$\Downarrow$$
$$r_{z} = r_{f} + \alpha_{z}$$

- We just created a risk-free asset paying an interest rate higher than the risk-free rate (lower if α_z < 0)
- This cannot be sustainable (smart investors will arbitrage that difference away by taking contrary positions on the r_f and r_z)
- As a consequence, α_z is driven to zero. Of course, α_z depends only on α_p, which means that α_p = 0

Arbitrage Pricing Theory

Multifactor Mode

$\mathsf{APT} \times \mathsf{CAPM}$

• CAPM (Equilibrium Principle):

Portfolio Theory \downarrow $\mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f)$

APT x CAPM

• CAPM (Equilibrium Principle):

Portfolio Theory

• APT (Non-Arbitrage Principle):

$$\begin{split} u_{i} &= (v_{i} - u_{i} v_{i}) \circ d_{i} + v_{i} = u_{i} - u_{i} v_{i} + v_{i} = u_{i} \\ &= u_{i} \\ &= (v_{i} - |u_{i}||\mathbf{3}|) \circ d_{i} + v_{i} = |u_{i}||\mathbf{3}| \\ \end{split}$$

APT x CAPM

• CAPM (Equilibrium Principle):

Portfolio Theory $\downarrow \\
\mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f)$

$\mathsf{APT} \times \mathsf{CAPM}$

• CAPM (Equilibrium Principle):

Portfolio Theory $\downarrow \\ \mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f)$

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$$
$$\downarrow$$
$$\mathbb{E}[r_{\rho}] = r_f + \beta_{\rho} \cdot (\mathbb{E}[r_M] - r_f)$$

$\mathsf{APT} \times \mathsf{CAPM}$

• CAPM (Equilibrium Principle):

Portfolio Theory $\downarrow \\ \mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f)$

$$r_{i,t} - r_{f} = \alpha_{i} + \beta_{i} \cdot (r_{M,t} - r_{f}) + e_{i,t}$$

$$\Downarrow$$

$$\mathbb{E}[r_{o}] = r_{f} + \beta_{o} \cdot (\mathbb{E}[r_{M}] - r_{f})$$

$\mathsf{APT} \times \mathsf{CAPM}$

• CAPM (Equilibrium Principle):

Portfolio Theory \Downarrow $\mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f)$

$$r_{i,t} - r_{f} = \alpha_{i} + \beta_{i} \cdot (r_{M,t} - r_{f}) + e_{i,t}$$

$$\Downarrow$$

$$\mathbb{E} [r_{\rho}] = r_{f} + \beta_{\rho} \cdot (\mathbb{E} [r_{M}] - r_{f})$$

or Models Empirical Evidence

In principle, which of the following assumptions is necessary for the APT to work?

- a) Many investors need to try to take advantage of arbitrage opportunities offered by deviations from the APT implications.
- **b)** Investors must prefer lower risk, $\sigma^2[r]$, and higher reward, $\mathbb{E}[r]$.
- c) Investors need to be homogeneous in the sense that they estimate $\sigma^2[r]$ and $\mathbb{E}[r]$ the same way.
- d) At least one investor must have access to lending/borrowing at the risk-free and use this capacity to take advantage of arbitrage opportunities offered by deviations from the APT implications.
- e) Investors must be rational and use Portfolio Theory.

or Models Empirical Evidence

In principle, which of the following assumptions is necessary for the APT to work?

- a) Many investors need to try to take advantage of arbitrage opportunities offered by deviations from the APT implications.
- **b)** Investors must prefer lower risk, $\sigma^2[r]$, and higher reward, $\mathbb{E}[r]$.
- c) Investors need to be homogeneous in the sense that they estimate $\sigma^2[r]$ and $\mathbb{E}[r]$ the same way.
- d) At least one investor must have access to lending/borrowing at the risk-free and use this capacity to take advantage of arbitrage opportunities offered by deviations from the APT implications.
- e) Investors must be rational and use Portfolio Theory.

Arbitrage Pricing Theory

Multifactor Models

Empirical Evidence

Outline

Overview

Capital Asset Pricing Model

Arbitrage Pricing Theory

Multifactor Models

Empirical Evidence

$$\mathbb{E}[\mathbf{r}_i] = \mathbf{r}_f + \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f) + \beta_{i,A} \cdot \mathbb{E}[\mathbf{r}_A - \mathbf{r}_a] + \beta_{i,B} \cdot \mathbb{E}[\mathbf{r}_B - \mathbf{r}_b] \pm$$

$$\mathbb{E}[r_i] = r_f + \beta_i \cdot (\mathbb{E}[r_M] - r_f) + \beta_{i,A} \cdot \mathbb{E}[r_A - r_a] + \beta_{i,B} \cdot \mathbb{E}[r_B - r_b]$$

$$\mathbb{E}[\mathbf{r}_i] = \mathbf{r}_f + \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f) + \beta_{i,A} \cdot \mathbb{E}[\mathbf{r}_A - \mathbf{r}_a] + \beta_{i,B} \cdot \mathbb{E}[\mathbf{r}_B - \mathbf{r}_b]$$

$$\mathbb{E}[\mathbf{r}_i] = \mathbf{r}_f + \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f) + \beta_{i,A} \cdot \mathbb{E}[\mathbf{r}_A - \mathbf{r}_a] + \beta_{i,B} \cdot \mathbb{E}[\mathbf{r}_B - \mathbf{r}_b] + \dots$$

CAPM: Multifactor Equilibrium Models

CAPM: Multifactor Equilibrium Models

CAPM: Multifactor Equilibrium Models

Arbitrage Pricing The

APT: Multifactor Arbitrage Pricing Models

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + \beta_{i,A} \cdot (r_A - r_a) + \dots + e_{i,t}$$

No free lunch in Wall street

$$\downarrow \mathbb{E}[r_{\rho}] = r_{f} + \beta_{\rho} \cdot (\mathbb{E}[r_{M}] - r_{f}) + \beta_{\rho,A} \cdot \mathbb{E}[r_{A} - r_{a}] + \dots$$

Arbitrage Pricing The

APT: Multifactor Arbitrage Pricing Models

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + \beta_{i,A} \cdot (r_A - r_a) + \dots + e_{i,t} + e_{i,t}$$

No free lunch in Wall street

$\downarrow \\ \mathbb{E}\left[r_{\rho}\right] = r_{f} + \beta_{\rho} \cdot \left(\mathbb{E}\left[r_{M}\right] - r_{f}\right) + \beta_{\rho,A} \cdot \mathbb{E}\left[r_{A} - r_{a}\right] + \dots$

Arbitrage Pricing Th

APT: Multifactor Arbitrage Pricing Models

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + \beta_{i,A} \cdot (r_A - r_a) + \dots + e_{i,t} + e_{i,t}$$

No free lunch in Wall street

$$\Downarrow \mathbb{E}[\mathbf{r}_{p}] = \mathbf{r}_{f} + \beta_{p} \cdot (\mathbb{E}[\mathbf{r}_{M}] - \mathbf{r}_{f}) + \beta_{p,A} \cdot \mathbb{E}[\mathbf{r}_{A} - \mathbf{r}_{a}] + \dots$$

itrage Pricing Theo

APT: Multifactor Arbitrage Pricing Models

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + \beta_{i,A} \cdot (r_A - r_a) + \dots + e_{i,t} + e_{i,t}$$

No free lunch in Wall street

$$\Downarrow \mathbb{E}[\mathbf{r}_{p}] = \mathbf{r}_{f} + \beta_{p} \cdot (\mathbb{E}[\mathbf{r}_{M}] - \mathbf{r}_{f}) + \beta_{p,A} \cdot \mathbb{E}[\mathbf{r}_{A} - \mathbf{r}_{a}] + \dots$$

That is, for any "well diversified" portfolio: $\alpha_p = 0$

Outline

Overview

Capital Asset Pricing Model

Arbitrage Pricing Theory

Multifactor Models

Empirical Evidence

This Section: CAPM Tests and the 3 Factor Model

CAPM empirical tests indicate it is an inadequate model. However, its logic is relevant and the most commonly applied factor model was created from a careful analysis of the CAPM failure.

ge Pricing The

CAPM: SML Prediction

• From CAPM, we have:

$$\mathbb{E}[\mathbf{r}_i] = \mathbf{r}_{\mathbf{f}} + \beta_i \cdot (\mathbb{E}[\mathbf{r}_{\mathbf{M}}] - \mathbf{r}_{\mathbf{f}})$$

$$ar{r}_i = \lambda_0 + \widehat{eta}_i \cdot \lambda_1 + \epsilon_i$$
 \downarrow
 $\lambda_0 = r_f$ and $\lambda_1 = \mathbb{E}\left[r_M\right] - r_f$

CAPM: SML Prediction

• From CAPM, we have:

$$\mathbb{E}[\mathbf{r}_i] = \mathbf{r}_{\mathbf{f}} + \beta_i \cdot (\mathbb{E}[\mathbf{r}_{\mathbf{M}}] - \mathbf{r}_{\mathbf{f}})$$

$$\overline{r}_i = \lambda_0 + \widehat{eta}_i \cdot \lambda_1 + \epsilon_i$$
 \downarrow
 $\lambda_0 = r_f$ and $\lambda_1 = \mathbb{E}\left[r_M\right] - r_f$

CAPM: SML Prediction

• From CAPM, we have:

$$\mathbb{E}[\mathbf{r}_i] = \mathbf{r}_f + \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f)$$

oitrage Pricing The

Overview

Capital Asset Pricing

The Pricing The

Empirical Evidence

Overview

Capital Asset Pricing

bitrage Pricing Theo

Empirical Evidence

Overview

Capital Asset Pricing

bitrage Pricing Theo

Empirical Evidence

CAPM: $\hat{\beta}$ Sorted Portfolios

3
Overview

Capital Asset Pricing

rbitrage Pricing Theo

Empirical Evidence

CAPM: $\hat{\beta}$ Sorted Portfolios

Overview

Capital Asset Pricing

rbitrage Pricing Theo

Empirical Evidence

CAPM: $\hat{\beta}$ Sorted Portfolios

Source: Fama and French (2004) - The Capital Asset Pricing Model: Theory and Evidence

Source: Fama and French (2004) - The Capital Asset Pricing Model: Theory and Evidence

Source: Fama and French (2004) - The Capital Asset Pricing Model: Theory and Evidence

Source: Fama and French (2004) - The Capital Asset Pricing Model: Theory and Evidence

Source: Fama and French (2004) - The Capital Asset Pricing Model: Theory and Evidence

Source: Fama and French (2004) - The Capital Asset Pricing Model: Theory and Evidence

CAPM: α Prediction

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_f = \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f)$$

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$$
$$\downarrow$$
$$\alpha_i = 0$$

CAPM: α Prediction

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_f = \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f)$$

$$\mathbf{r}_{i,t} - \mathbf{r}_{\mathbf{f}} = \alpha_i + \beta_i \cdot (\mathbf{r}_{\mathbf{M},t} - \mathbf{r}_{\mathbf{f}}) + \mathbf{e}_{i,t}$$

$$\downarrow$$

$$\alpha_i = 0$$

CAPM: α Prediction

$$\mathbb{E}[\mathbf{r}_i] - \mathbf{r}_f = \beta_i \cdot (\mathbb{E}[\mathbf{r}_M] - \mathbf{r}_f)$$

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + e_{i,t}$$
$$\Downarrow$$
$$\alpha_i = 0$$

bitrage Pricing The

Empirical Evidence

CAPM: $\hat{\alpha}$ from 1926 to 2012 (US Equity)

Source: Franzzini and Petersen (2014) - Betting Against Beta

Arbitrage Pricing The

CAPM: $\hat{\alpha}$ Across Asset Classes

Source: Franzzini and Petersen (2014) - Betting Against Beta

CAPM: " β is the only Risk Measure" Prediction

$$\mathbb{E}[\mathbf{r}_i] = \mathbf{r}_{\mathbf{f}} + \beta_i \cdot (\mathbb{E}[\mathbf{r}_{\mathbf{M}}] - \mathbf{r}_{\mathbf{f}})$$

This relation to the test of t

Empirical Evidence

CAPM: Characteristic Sorted Portfolios

rbitrage Pricing Th

CAPM: Characteristic Sorted Portfolios

X = Size of Firm

X = Book Equity / Market

CAPM: Size x Book-to-Market Portfolios (1946 to 2010)

Source: Goyal (2012) - Empirical Cross-Sectional Asset Pricing: a Survey

3 Factor Model: Equilibrium Justification

3 Factor Model: Equilibrium Justification

3 Factor Model: Equilibrium Justification

3 Factor Model: APT Justification

• Value stocks comove with other value stocks and growth stocks with other growth stocks. The same is true for small vs large companies. Therefore:

$$\begin{aligned} \mathbf{r}_{i,t} - \mathbf{r}_{f} &= \alpha_{i} + \beta_{i} \cdot (\mathbf{r}_{M,t} - \mathbf{r}_{f}) + \beta_{i}^{HML} \cdot HML_{t} + \beta_{i}^{SMB} \cdot SMB_{t} + \mathbf{e}_{i,t} \\ &+ \\ No \text{ free lunch in Wall street} \\ &\downarrow \\ \mathbb{E}\left[\mathbf{r}_{\rho}\right] &= \mathbf{r}_{f} + \beta_{\rho} \cdot (\mathbb{E}\left[\mathbf{r}_{M}\right] - \mathbf{r}_{f}) + \beta_{\rho}^{HML} \cdot \mathbb{E}\left[HML\right] + \beta_{\rho}^{SMB} \cdot \mathbb{E}\left[SMB\right] \end{aligned}$$

3 Factor Model: APT Justification

• Value stocks comove with other value stocks and growth stocks with other growth stocks. The same is true for small vs large companies. Therefore:

$$r_{i,t} - r_f = \alpha_i + \beta_i \cdot (r_{M,t} - r_f) + \beta_i^{HML} \cdot HML_t + \beta_i^{SMB} \cdot SMB_t + e_{i,t} + e_{i,t}$$

No free lunch in Wall street

 $\mathbb{E}[r_{p}] = r_{f} + \beta_{p} \cdot (\mathbb{E}[r_{M}] - r_{f}) + \beta_{p}^{HML} \cdot \mathbb{E}[HML] + \beta_{p}^{SMB} \cdot \mathbb{E}[SMB]$

3 Factor Model: APT Justification

• Value stocks comove with other value stocks and growth stocks with other growth stocks. The same is true for small vs large companies. Therefore:

$$\begin{aligned} \mathbf{r}_{i,t} - \mathbf{r}_{f} &= \alpha_{i} + \beta_{i} \cdot (\mathbf{r}_{M,t} - \mathbf{r}_{f}) + \beta_{i}^{HML} \cdot HML_{t} + \beta_{i}^{SMB} \cdot SMB_{t} + \mathbf{e}_{i,t} \\ &+ \\ No \text{ free lunch in Wall street} \\ &\downarrow \\ \mathbb{E}\left[\mathbf{r}_{p}\right] &= \mathbf{r}_{f} + \beta_{p} \cdot \left(\mathbb{E}\left[\mathbf{r}_{M}\right] - \mathbf{r}_{f}\right) + \beta_{p}^{HML} \cdot \mathbb{E}\left[HML\right] + \beta_{p}^{SMB} \cdot \mathbb{E}\left[SMB\right] \end{aligned}$$

3 Factor Model: Size x Book-to-Market Porfolios (1946 to 2010)

Source: Goyal (2012) - Empirical Cross-Sectional Asset Pricing: a Survey

From an empirical perspective, there are three key failures of the CAPM. Can you explain what are the failures and what is the evidence behind each one of them?