Asset Prices, Local Prospects and the Geography of Housing Dynamics

Preetesh Kantak

Discussant: Andrei S. Gonçalves¹

¹Finance Department The Ohio State University

Outline

The Paper

Major Comments

Minor Comments

Final Remarks

Empirical Analysis in a Nutshell...

	Stocks		Housing					
x ^{global}	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*			
X	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]			
X _{msa}		0.0126***						

	Stocks		Housing					
x ^{global}	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*			
X	[-1.92]	-1.92] [3.77] [2.26]	[1.39]	[1.81]				
		0.0126***						
X _{msa}		[6.29]						
global Xmsa			0.0155***	0.0141***	0.0175***			
Xmsa			[10.42]	[8.43]	[8.73]			
local			0.0036**	0.0038**	0.0036**			
X ^{local} 			[2.21]	[2.34]	[2.24]			

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow$ long-run growth
- 2. Finding: \downarrow expected growth $\implies \downarrow$ housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

	Stocks	Housing					
xglobal	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*		
X	[-1.92]	[3.77]	· · · · · · · · · · · · · · · · · · ·	[1.39]	[1.81]		
		0.0126***					
X _{msa}		[6.29]					
global Xmsa			0.0155***	0.0141***	0.0175***		
×msa			[10.42]	[8.43]	[8.73]		
√local			0.0036**	0.0038**	0.0036**		
X _{msa}			[2.21]	[2.34]	[2.24]		

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
- 2. Finding: \downarrow expected growth $\implies \downarrow$ housing risk premium
- 3. Implication: ↓ expected growth ⇒ ↑ house prices

Empirical Analysis in a Nutshell...

	Stocks		Housing				
x ^{global}	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*		
X	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]		
.,		0.0126***					
X _{msa}		[6.29]					
global Xmsa			0.0155***	0.0141***	0.0175***		
Xmsa			[10.42]	[8.43]	[8.73]		
local			0.0036**	0.0038**	0.0036**		
X ^{local} 			[2.21]	[2.34]	[2.24]		

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
- 2. Finding: \downarrow expected growth \implies \downarrow housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

Empirical Analysis in a Nutshell...

	Stocks		Housing					
x ^{global}	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*			
X	[-1.92]	[3.77]		[1.39]	[1.81]			
		0.0126***						
X _{msa}		[6.29]						
global Xmsa			0.0155***	0.0141***	0.0175***			
Xmsa			[10.42]	[8.43]	[8.73]			
local			0.0036**	0.0038**	0.0036**			
X ^{local} 			[2.21]	[2.34]	[2.24]			

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
- 2. Finding: \downarrow expected growth \implies \downarrow housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

Mechanism in a Nutshell...

$$x_{t+1} = \rho x_t + \epsilon_{x,t}$$

$$\Delta c_{t+1} = \mu_c + \phi_c \cdot x_t + \epsilon_{c,t}$$

$$\Delta s_{t+1} = \mu_s + I_{x>0} \cdot \phi_s \cdot x_t + \epsilon_{s,s}$$

$$x_{t+1} = \rho x_t + \epsilon_{x,t}$$

$$\Delta c_{t+1} = \mu_c + \phi_c \cdot x_t + \epsilon_{c,t}$$

$$\Delta s_{t+1} = \mu_s + I_{x>0} \cdot \phi_s \cdot x_t + \epsilon_{s,i}$$

$$x_{t+1} = \rho x_t + \epsilon_{x,t}$$

$$\Delta c_{t+1} = \mu_c + \phi_c \cdot x_t + \epsilon_{c,t}$$

$$\Delta s_{t+1} = \mu_s + I_{x>0} \cdot \phi_s \cdot x_t + \epsilon_{s,t}$$

Mechanism in a Nutshell...

$$x_{t+1} = \rho x_t + \epsilon_{x,t}$$

$$\Delta c_{t+1} = \mu_c + \phi_c \cdot x_t + \epsilon_{c,t}$$

$$\Delta s_{t+1} = \mu_s + I_{x>0} \cdot \phi_s \cdot x_t + \epsilon_{s,t}$$

Contribution

• How do prices respond to long-run growth shocks?

- Real Estate intrinsic properties ⇒ now do local growth prospects impact housing risk premia?
- The focus on long-run dynamics differs from previous literature that connects location to economic activity

Contribution

- How do prices respond to long-run growth shocks?
- Real Estate intrinsic properties ⇒ how do local growth prospects impact housing risk premia?
- The focus on long-run dynamics differs from previous literature that connects location to economic activity

Contribution

- How do prices respond to long-run growth shocks?
- Real Estate intrinsic properties ⇒ how do local growth prospects impact housing risk premia?
- The focus on long-run dynamics differs from previous literature that connects location to economic activity

Outline

The Paper

Major Comments

Minor Comments

Final Remarks

Is
$$pd = \mathbb{E} [\Delta d]$$
?

	Stocks	Housing				
	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*	
X	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]	

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
 - Menzly, Santos, and Veronesi (2004): $\uparrow pd \Rightarrow \downarrow \mathbb{E}[r]$, but $corr\left(\mathbb{E}[r], \mathbb{E}[\Delta d]\right) > 0$
 - Lettau and Ludvigson (2001, 2005) indirect evidence on $corr\left(\mathbb{E}\left[r\right],\mathbb{E}\left[\Delta d\right]\right)>0$
 - Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0.40$
- 2. Finding: \downarrow expected growth \implies \downarrow housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

Is
$$pd = \mathbb{E} [\Delta d]$$
?

	Stocks	Housing				
xglobal	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*	
X	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]	

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
 - Menzly, Santos, and Veronesi (2004): $\uparrow pd \Rightarrow \downarrow \mathbb{E}[r]$, but $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Lettau and Ludvigson (2001, 2005) indirect evidence on $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0.40$
- 2. Finding: \downarrow expected growth $\implies \downarrow$ housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

Is
$$pd = \mathbb{E} [\Delta d]$$
?

	Stocks	Housing				
xglobal	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*	
X	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]	

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
 - Menzly, Santos, and Veronesi (2004): $\uparrow pd \Rightarrow \downarrow \mathbb{E}[r]$, but $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Lettau and Ludvigson (2001, 2005) indirect evidence on $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $corr\left(\mathbb{E}\left[r\right], \mathbb{E}\left[\Delta d\right]\right) > 0.40$
- 2. Finding: \downarrow expected growth $\implies \downarrow$ housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

	Stocks	Housing				
	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*	
Xerran	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]	

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
 - Menzly, Santos, and Veronesi (2004): $\uparrow pd \Rightarrow \downarrow \mathbb{E}[r]$, but $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Lettau and Ludvigson (2001, 2005) indirect evidence on $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $corr\left(\mathbb{E}\left[r\right], \mathbb{E}\left[\Delta d\right]\right) > 0.40$
- 2. Finding: \downarrow expected growth $\implies \downarrow$ housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

	Stocks	Housing				
	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*	
Xerran	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]	

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
 - Menzly, Santos, and Veronesi (2004): $\uparrow pd \Rightarrow \downarrow \mathbb{E}[r]$, but $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Lettau and Ludvigson (2001, 2005) indirect evidence on $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $corr\left(\mathbb{E}\left[r\right], \mathbb{E}\left[\Delta d\right]\right) > 0.40$
- 2. Finding: \downarrow expected growth $\implies \downarrow$ housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

Is $pd = \mathbb{E}[\Delta d]$?

	Stocks	Housing				
	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*	
X	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]	

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
 - Menzly, Santos, and Veronesi (2004): $\uparrow pd \Rightarrow \downarrow \mathbb{E}[r]$, but $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Lettau and Ludvigson (2001, 2005) indirect evidence on $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $corr\left(\mathbb{E}\left[r\right], \mathbb{E}\left[\Delta d\right]\right) > 0.40$
- 2. Finding: \uparrow equity premium $\implies \downarrow$ housing risk premium
- 3. Implication: \downarrow expected growth \implies \uparrow house prices

Is $pd = \mathbb{E} [\Delta d]$?

	Stocks	Housing				
	-0.0347*	0.0241***	0.0081**	0.0435	0.0567*	
X	[-1.92]	[3.77]	[2.26]	[1.39]	[1.81]	

- 1. Measure: $\downarrow x_t = pd_t \implies \downarrow \text{long-run growth}$
 - Menzly, Santos, and Veronesi (2004): $\uparrow pd \Rightarrow \downarrow \mathbb{E}[r]$, but $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Lettau and Ludvigson (2001, 2005) indirect evidence on $corr(\mathbb{E}[r], \mathbb{E}[\Delta d]) > 0$
 - Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $corr\left(\mathbb{E}\left[r\right], \mathbb{E}\left[\Delta d\right]\right) > 0.40$
- 2. Finding: ↑ equity premium ⇒ ↓ housing risk premium
- 3. Implication: \uparrow equity premium $\implies \uparrow$ house prices

$$egin{aligned}
ho d_t &= \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[\Delta d_{t+1+j}
ight] - \mathbb{E}_t \left[r_{t+1+j}^e
ight]
ight) \
ho s_t &= \sum_{j=0}^{\infty}
ho_h^j \left(\mathbb{E}_t \left[\Delta s_{t+1+j}
ight] - \mathbb{E}_t \left[r_{t+1+j}^h
ight]
ight) \end{aligned}$$

$$ho d_t = \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[\Delta d_{t+1+j} \right] - \mathbb{E}_t \left[r_{t+1+j}^e \right]
ight)$$

$$ps_{t} = \sum_{j=0}^{\infty} \rho_{h}^{j} \left(\mathbb{E}_{t} \left[\Delta s_{t+1+j} \right] - \mathbb{E}_{t} \left[r_{t+1+j}^{h} \right] \right)$$

$$ho d_t = \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[\Delta d_{t+1+j} \right] - \mathbb{E}_t \left[r_{t+1+j}^e \right]
ight)$$

$$ps_{t} = \sum_{j=0}^{\infty} \rho_{h}^{j} \left(\mathbb{E}_{t} \left[\Delta s_{t+1+j} \right] - \mathbb{E}_{t} \left[r_{t+1+j}^{h} \right] \right)$$

$$pd_{t} = \sum_{j=0}^{\infty} \rho_{e}^{j} \left(\mathbb{E}_{t} \left[g_{t+j}^{d} \right] - \mathbb{E}_{t} \left[\mu_{t+j}^{e} \right] \right)$$

$$ps_{t} = \sum_{j=0}^{\infty} \rho_{h}^{j} \left(\mathbb{E}_{t} \left[g_{t+j}^{s} \right] - \mathbb{E}_{t} \left[\mu_{t+j}^{h} \right] \right)$$

• All variables are demeaned (r_f is constant):

$$egin{aligned}
ho d_t &= \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d
ight] - \mathbb{E}_t \left[\mu_{t+j}^e
ight]
ight) \
ho s_t &= \sum_{j=0}^{\infty}
ho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s
ight] - \mathbb{E}_t \left[\mu_{t+j}^h
ight]
ight) \end{aligned}$$

• All variables are demeaned (r_f is constant):

$$\begin{aligned} \rho d_t &= \sum_{j=0}^{\infty} \rho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d \right] - \mathbb{E}_t \left[\mu_{t+j}^e \right] \right) \\ \rho s_t &= \sum_{j=0}^{\infty} \rho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s \right] - \mathbb{E}_t \left[\mu_{t+j}^h \right] \right) \end{aligned}$$

$$\mu_{t+1}^{\mathrm{e}} = \phi_{\mathrm{e}} \cdot \mu_{t}^{\mathrm{e}} + \sigma_{\mathrm{e}} \cdot \epsilon_{t+1}^{\mathrm{e}}$$

• All variables are demeaned (r_f is constant):

$$\begin{aligned} \rho d_t &= \sum_{j=0}^{\infty} \rho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d \right] - \mathbb{E}_t \left[\mu_{t+j}^e \right] \right) \\ \rho s_t &= \sum_{j=0}^{\infty} \rho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s \right] - \mathbb{E}_t \left[\mu_{t+j}^h \right] \right) \end{aligned}$$

$$\mu_{t+1}^e = 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e$$

All variables are demeaned (r_f is constant):

$$egin{aligned}
ho d_t &= \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d
ight] - \mathbb{E}_t \left[\mu_{t+j}^e
ight]
ight) \
ho s_t &= \sum_{j=0}^{\infty}
ho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s
ight] - \mathbb{E}_t \left[\mu_{t+j}^h
ight]
ight) \end{aligned}$$

$$\begin{split} \mu_{t+1}^e &= 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e \\ \mu_{t+1}^h &= \phi_h \cdot \mu_t^h + \sigma_h \cdot \epsilon_{t+1}^h \end{split}$$

All variables are demeaned (r_f is constant):

$$egin{aligned}
ho d_t &= \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d
ight] - \mathbb{E}_t \left[\mu_{t+j}^e
ight]
ight) \
ho s_t &= \sum_{j=0}^{\infty}
ho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s
ight] - \mathbb{E}_t \left[\mu_{t+j}^h
ight]
ight) \end{aligned}$$

$$\begin{split} \mu_{t+1}^e &= 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e \\ \mu_{t+1}^h &= 0.932 \cdot \mu_t^h + 0.016 \cdot \epsilon_{t+1}^h \end{split}$$

All variables are demeaned (r_f is constant):

$$egin{aligned}
ho d_t &= \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d
ight] - \mathbb{E}_t \left[\mu_{t+j}^e
ight]
ight) \
ho s_t &= \sum_{j=0}^{\infty}
ho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s
ight] - \mathbb{E}_t \left[\mu_{t+j}^h
ight]
ight) \end{aligned}$$

$$\begin{aligned} \mu_{t+1}^e &= 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e \\ \mu_{t+1}^h &= 0.932 \cdot \mu_t^h + 0.016 \cdot \epsilon_{t+1}^h \\ g_{t+1} &= \phi_g \cdot g_t + \sigma_g \cdot \epsilon_{t+1}^g \end{aligned}$$

All variables are demeaned (r_f is constant):

$$egin{aligned}
ho d_t &= \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d
ight] - \mathbb{E}_t \left[\mu_{t+j}^e
ight]
ight) \
ho s_t &= \sum_{j=0}^{\infty}
ho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s
ight] - \mathbb{E}_t \left[\mu_{t+j}^h
ight]
ight) \end{aligned}$$

$$\begin{aligned} \mu_{t+1}^e &= 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e \\ \mu_{t+1}^h &= 0.932 \cdot \mu_t^h + 0.016 \cdot \epsilon_{t+1}^h \\ g_{t+1} &= 0.775 \cdot g_t + 0.179 \cdot 0.048 \cdot \epsilon_{t+1}^g \end{aligned}$$

• All variables are demeaned (r_f is constant):

$$egin{aligned}
ho d_t &= \sum_{j=0}^{\infty}
ho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d
ight] - \mathbb{E}_t \left[\mu_{t+j}^e
ight]
ight) \
ho s_t &= \sum_{j=0}^{\infty}
ho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s
ight] - \mathbb{E}_t \left[\mu_{t+j}^h
ight]
ight) \end{aligned}$$

$$\mu_{t+1}^e = 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e$$

$$\mu_{t+1}^h = 0.932 \cdot \mu_t^h + 0.016 \cdot \epsilon_{t+1}^h$$

$$g_{t+1} = 0.775 \cdot g_t + 0.009 \cdot \epsilon_{t+1}^g$$

• All variables are demeaned (r_f is constant):

$$\begin{aligned} \rho d_t &= \sum_{j=0}^{\infty} \rho_e^j \left(\mathbb{E}_t \left[g_{t+j}^d \right] - \mathbb{E}_t \left[\mu_{t+j}^e \right] \right) \\ \rho s_t &= \sum_{j=0}^{\infty} \rho_h^j \left(\mathbb{E}_t \left[g_{t+j}^s \right] - \mathbb{E}_t \left[\mu_{t+j}^h \right] \right) \end{aligned}$$

$$\begin{split} \mu_{t+1}^e &= 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e \\ \mu_{t+1}^h &= 0.932 \cdot \mu_t^h + 0.016 \cdot \epsilon_{t+1}^h \\ g_{t+1} &= 0.775 \cdot g_t + 0.009 \cdot \epsilon_{t+1}^g \\ g_t^d &= 4.9 \cdot g_t \\ g_t^s &= 5 \cdot g_t \end{split}$$

All variables are demeaned (r_f is constant):

$$egin{aligned} egin{aligned} egin{aligned} eta d_t &= rac{1}{1 -
ho_e \cdot \phi_g} \cdot egin{aligned} g_t^d - rac{1}{1 -
ho_e \cdot \phi_e} \cdot \mu_t^e \ egin{aligned} eta_t &= rac{1}{1 -
ho_h \cdot \phi_g} \cdot egin{aligned} g_t^s - rac{1}{1 -
ho_h \cdot \phi_h} \cdot \mu_t^h \end{aligned}$$

$$\begin{split} \mu_{t+1}^e &= 0.932 \cdot \mu_t^e + 0.016 \cdot \epsilon_{t+1}^e \\ \mu_{t+1}^h &= 0.932 \cdot \mu_t^h + 0.016 \cdot \epsilon_{t+1}^h \\ g_{t+1} &= 0.775 \cdot g_t + 0.009 \cdot \epsilon_{t+1}^g \\ g_t^d &= 4.9 \cdot g_t \\ g_t^s &= 5 \cdot g_t \end{split}$$

Major Comments

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications
ϵ^e	1				
ϵ^{h}	0.5	1			
ϵ^{g}	0.42	0.42	1		

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Result	s Implications			
ϵ^e	1			$\rho\left(pd,g\right)=0.$	27			
ϵ^{h}		1		$\rho(pd,\mu^e) = -0$.81			
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$ \rho \left(pd, \mu^h \right) = -0 $ $ \rho \left(pd, ps \right) = 0 $.30			
				$\rho(pd, ps) = 0.$	49			

	ϵ^{e}	ϵ^h	ϵ^{g}	Empirical Results		Implications	
ϵ^e	1			$\rho\left(pd,g\right) =$		$ ho\left(g,\mu^{h}\right) = ho\left(g,ps\right) = \ho\left(g,ps\right) = \$	0.35
ϵ^{h}	0.5	1		$ ho\left(extit{pd}, \mu^{ extit{e}} ight) =$		$\rho\left(g,ps\right) =$	0.36
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$\rho\left(pd,\mu^{h}\right) = \\ \rho\left(pd,ps\right) = $	-0.30		
				$\rho\left(pd,ps\right) =$	0.49		

	ϵ^{e}	ϵ^h	ϵ^{g}	Empirical Re	sults	Implications	
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.35
ϵ^{h}	0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$		$\rho(g, ps) =$	0.36
ϵ^{g}	0.42	0.42	1	$\rho\left(pd,\mu^{h}\right) = \\ \rho\left(pd,ps\right) = $	-0.30		
				$\rho(pd, ps) =$	0.49		
ϵ^e	1						
ϵ^{h}	-0.5	1					
ϵ^{g}	0.42	0.42	1				

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Re	Empirical Results		ns	
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.35	
ϵ^{h}	0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$ ho\left(g,ps ight) =% \left(g,ps \right) =% \left(g,ps ight) $	0.36	
ϵ^{g}	0.42	0.42	1	$\rho\left(pd,\mu^{h}\right)=0$	-0.30			
				$\rho\left(pd,ps\right) =$	0.49			
ϵ^{e}	1			$\rho\left(pd,g\right) =$	0.27			
ϵ^{h}	-0.5			$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$				
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$\rho\left(pd,\mu^{h}\right)=0$	0.74			
				$\rho\left(pd,\mu^{h}\right) = \\ \rho\left(pd,ps\right) =$	-0.54			

		h	σ.	5				
	ϵ^e	ϵ^{h}	ϵ^{g}	Empirical Re	Empirical Results		Implications	
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.35	
ϵ^{h}	0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$ ho\left(g,ps ight) =% \left(g,ps \right) =% \left(g,ps ight) $	0.36	
ϵ^{g}	0.42	0.42	1	$\rho\left(extsf{pd},\mu^{ extsf{h}} ight)=0$	-0.30			
				$\rho\left(pd,ps\right) =$	0.49			
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.36	
ϵ^{h}	-0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$\rho\left(g,ps\right)=$	0.35	
ϵ^{g}	0.42	0.42	1	$\rho\left(extit{pd},\mu^{ extit{h}} ight)=0$				
				$\rho\left(pd,ps\right) =$	-0.54			

	ϵ^{e}	ϵ^h	ϵ^{g}	Empirical Re	sults	Implicatio	ns
ϵ^{e}	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.35
ϵ^{h}	0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81		0.36
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$\rho\left(extsf{pd},\mu^{ extsf{h}} ight)=$	-0.30		
				$\rho\left(pd,ps\right) =$	0.49		
ϵ^{e}	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.36
ϵ^{h}	-0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$\rho(g, ps) =$	0.35
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$\rho\left(pd,\mu^{h}\right)=$	0.74		
				$\rho\left(pd,ps\right) =$	-0.54		
ϵ^e	1						
ϵ^{h}	-0.5	1					
ϵ^{g}	0.42	-0.42	1				

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results		Implications	
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(g,\mu^{h}\right)=$	0.35
ϵ^{h}	0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$\rho\left(g,ps\right) =$	0.36
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$\rho\left(extsf{pd},\mu^{ extsf{h}} ight)=0$	-0.30		
				$\rho\left(pd,ps\right) =$			
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.36
ϵ^{h}	-0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$\rho(g, ps) =$	0.35
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$ ho \left(pd, \mu^{h} ight) =$	0.74		
				$\rho\left(pd,ps\right) =$	-0.54		
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27		
ϵ^{h}	-0.5	1		$ ho\left(extit{pd}, \mu^{ extit{e}} ight) =$	-0.81		
$\epsilon^{\mathbf{g}}$	0.42	-0.42	1	$\rho\left(pd,\mu^{h}\right)=$	0.31		
				$\rho(pd, ps) =$	-0.09		

	e	ϵ^h	σ	Fi.i.s.I.D.	l		
	ϵ^e	ϵ "	ϵ^{g}	Empirical Re	suits	Implication	ns
ϵ^e	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{\mathbf{h}}\right)=$	0.35
ϵ^h	0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$ ho\left(g,ps ight) =$	0.36
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$ ho \left(extstyle extstyle ho \left(extstyle extstyle extstyle extstyle ho \left(extstyle ex$	-0.30		
				$ ho\left(extit{pd}, extit{ps} ight)=$	0.49		
ϵ^{e}	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(\mathbf{g},\mu^{h}\right)=$	0.36
ϵ^h	-0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$\rho\left(g,ps\right) =$	0.35
$\epsilon^{\mathbf{g}}$	0.42	0.42	1	$\rho\left(extsf{pd},\mu^{ extsf{h}} ight)=0$	0.74		
				$\rho\left(extit{pd}, extit{ps} ight)=$	-0.54		
ϵ^{e}	1			$\rho\left(pd,g\right) =$	0.27	$\rho\left(g,\mu^{h}\right)=$	-0.33
ϵ^h	-0.5	1		$ ho\left(extit{pd},\mu^{ extit{e}} ight)=$	-0.81	$\rho\left(g,ps\right) =$	0.74
$\epsilon^{\mathbf{g}}$	0.42	-0.42	1	$\rho\left(pd,\mu^{h} ight) =$	0.31		
				ρ (pd, ps) =	-0.09		

Minor Comments Final Formation

Outline

The Paper

Major Comments

Minor Comments

Final Remarks

Minor Comments Final Remode

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{ct} should be central to analysis

- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{cr} should be central to analysis

- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

Minor Comments Final Remarks

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{cr} should be central to analysis

- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of $x_t^{c'}$ should be central to analysis

- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{cf} should be central to analysis
 - ICAPM vs CAPM
 - \circ Weak relation between $\mathbb{E}\left[r
 ight]$ and σ (see Campbell et al (2017))
- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{cf} should be central to analysis
 - ICAPM vs CAPM
 - $_{\circ}$ Weak relation between $\mathbb{E}\left[r
 ight]$ and σ (see Campbell et al (2017))
- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{cf} should be central to analysis
 - ICAPM vs CAPM
 - \circ Weak relation between $\mathbb{E}\left[r
 ight]$ and σ (see Campbell et al (2017))
- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{cf} should be central to analysis
 - ICAPM vs CAPM
 - \circ Weak relation between $\mathbb{E}\left[r
 ight]$ and σ (see Campbell et al (2017))
- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

- Repeat-sales method. predictability for $r_{t+1 \to t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_t in equation 1, but $x_t = pd_t$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of x_t^{cf} should be central to analysis
 - ICAPM vs CAPM
 - \circ Weak relation between $\mathbb{E}\left[r
 ight]$ and σ (see Campbell et al (2017))
- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle β s) are estimated. System GMM for standard errors.

Minor Comments Final Remark

Some Comments on the Model

• i.i.d shocks = Business Cycle Shocks?

• Can you generalize the Δs process to have non-zero ϕ in bad times? Identification (equation 12) seems to depend heavily on this assumption

What is the role of MSA specific non-housing goods?

Some Comments on the Model

• i.i.d shocks = Business Cycle Shocks?

• Can you generalize the Δs process to have non-zero ϕ in bad times? Identification (equation 12) seems to depend heavily on this assumption

What is the role of MSA specific non-housing goods?

Some Comments on the Model

• i.i.d shocks = Business Cycle Shocks?

• Can you generalize the Δs process to have non-zero ϕ in bad times? Identification (equation 12) seems to depend heavily on this assumption

What is the role of MSA specific non-housing goods?

Outline

The Paper

Major Comments

Minor Comments

Final Remarks

Final Remarks

• Paper is very interesting: important question!

 Needs to better disentangle the difference between expected growth and expected returns

Good luck!

Final Remarks

• Paper is very interesting: important question!

 Needs to better disentangle the difference between expected growth and expected returns

Good luck

Final Remarks

• Paper is very interesting: important question!

 Needs to better disentangle the difference between expected growth and expected returns

Good luck!