Asset Prices, Local Prospects and the Geography of Housing Dynamics

Preetesh Kantak

Discussant: Andrei S. Gonçalves ${ }^{1}$

${ }^{1}$ Finance Department
The Ohio State University

April 2017

Outline

The Paper

Major Comments

Minor Comments

Final Remarks

Empirical Analysis in a Nutshell...

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

Empirical Analysis in a Nutshell...

	Stocks	Housing			
$x^{\text {global }}$	$\begin{gathered} -0.0347 * \\ {[-1.92]} \\ \hline \end{gathered}$	$\begin{gathered} 0.0241^{* * *} \\ {[3.77]} \\ \hline \end{gathered}$	$\begin{gathered} 0.0081^{* *} \\ {[2.26]} \\ \hline \end{gathered}$	$\begin{aligned} & 0.0435 \\ & {[1.39]} \end{aligned}$	$\begin{gathered} 0.0567 * \\ {[1.81]} \\ \hline \end{gathered}$
$\chi_{\text {msa }}$		$\begin{gathered} \hline 0.0126^{* * *} \\ {[6.29]} \end{gathered}$			
$x_{m s a}^{\text {global }}$			$\begin{gathered} 0.0155^{* * *} \\ {[10.42]} \end{gathered}$	$\begin{gathered} 0.0141^{* * *} \\ {[8.43]} \end{gathered}$	$\begin{gathered} 0.0175^{* * *} \\ {[8.73]} \end{gathered}$
$x_{m s a l}^{\text {local }}$			$\begin{gathered} 0.0036^{* *} \\ {[2.21]} \end{gathered}$	$\begin{gathered} 0.0038^{* *} \\ {[2.34]} \\ \hline \end{gathered}$	$\begin{gathered} 0.0036^{* *} \\ {[2.24]} \\ \hline \end{gathered}$

Empirical Analysis in a Nutshell...

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$
$x_{\text {msa }}$		$0.0126^{* * *}$			
		$[6.29]$			
$x_{\text {msal }}^{\text {global }}$			$0.0155^{* * *}$	$0.0141^{* * *}$	$0.0175^{* * *}$
			$[10.42]$	$[8.43]$	$[8.73]$
$x_{\text {msal }}^{\text {local }}$			$0.0036^{* *}$	$0.0038^{* *}$	$0.0036^{* *}$
			$[2.21]$	$[2.34]$	$[2.24]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth

Empirical Analysis in a Nutshell...

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$
$x_{\text {msa }}$		$0.0126^{* * *}$			
		$[6.29]$			
$x_{\text {msal }}^{\text {global }}$			$0.0155^{* * *}$	$0.0141^{* * *}$	$0.0175^{* * *}$
			$[10.42]$	$[8.43]$	$[8.73]$
$x_{\text {msal }}^{\text {local }}$			$0.0036^{* *}$	$0.0038^{* *}$	$0.0036^{* *}$
			$[2.21]$	$[2.34]$	$[2.24]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth
2. Finding: \downarrow expected growth $\Longrightarrow \downarrow$ housing risk premium

Empirical Analysis in a Nutshell...

	Stocks	Housing			
$x^{\text {global }}$	$\begin{gathered} -0.0347^{*} \\ {[-1.92]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0241^{* * *} \\ {[3.77]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0081^{* *} \\ {[2.26]} \\ \hline \end{gathered}$	$\begin{gathered} 0.0435 \\ {[1.39]} \end{gathered}$	$\begin{gathered} \hline 0.0567^{*} \\ {[1.81]} \end{gathered}$
$\chi_{\text {msa }}$		$\begin{gathered} \hline 0.0126^{* * *} \\ {[6.29]} \end{gathered}$			
$x_{m s a}^{\text {global }}$			$\begin{gathered} 0.0155^{* * *} \\ {[10.42]} \end{gathered}$	$\begin{gathered} 0.0141^{* * *} \\ {[8.43]} \end{gathered}$	$\begin{gathered} 0.0175^{* * *} \\ {[8.73]} \end{gathered}$
$x_{m s a l}^{\text {local }}$			$\begin{gathered} 0.0036^{* *} \\ {[2.21]} \\ \hline \end{gathered}$	$\begin{gathered} 0.0038^{* *} \\ {[2.34]} \\ \hline \end{gathered}$	$\begin{gathered} 0.0036^{* *} \\ {[2.24]} \\ \hline \end{gathered}$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth
2. Finding: \downarrow expected growth $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \downarrow expected growth $\Longrightarrow \uparrow$ house prices

Mechanism in a Nutshell...

$$
x_{t+1}=\rho x_{t}+\epsilon_{x, t}
$$

Mechanism in a Nutshell...

$$
x_{t+1}=\rho x_{t}+\epsilon_{x, t}
$$

$$
\Delta c_{t+1}=\mu_{c}+\phi_{c} \cdot x_{t}+\epsilon_{c, t}
$$

Mechanism in a Nutshell...

$$
x_{t+1}=\rho x_{t}+\epsilon_{x, t}
$$

$$
\Delta c_{t+1}=\mu_{c}+\phi_{c} \cdot x_{t}+\epsilon_{c, t}
$$

$$
\Delta s_{t+1}=\mu_{s}+I_{x>0} \cdot \phi_{s} \cdot x_{t}+\epsilon_{s, t}
$$

Mechanism in a Nutshell...

$$
x_{t+1}=\rho x_{t}+\epsilon_{x, t}
$$

$$
\Delta c_{t+1}=\mu_{c}+\phi_{c} \cdot x_{t}+\epsilon_{c, t}
$$

$$
\Delta s_{t+1}=\mu_{s}+I_{x>0} \cdot \phi_{s} \cdot x_{t}+\epsilon_{s, t}
$$

Contribution

- How do prices respond to long-run growth shocks?

Contribution

- How do prices respond to long-run growth shocks?
- Real Estate intrinsic properties \Rightarrow how do local growth prospects impact housing risk premia?

Contribution

- How do prices respond to long-run growth shocks?
- Real Estate intrinsic properties \Rightarrow how do local growth prospects impact housing risk premia?
- The focus on long-run dynamics differs from previous literature that connects location to economic activity

Outline

The Paper

Major Comments

Minor Comments

Final Remarks

$$
\text { Is } p d=\mathbb{E}[\Delta d] \text { ? }
$$

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

1. Measure: $\downarrow x_{t}=p d_{t} \quad \Longrightarrow \downarrow$ long-run growth
2. Finding: \downarrow expected growth $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \downarrow expected growth $\Longrightarrow \uparrow$ house prices

$$
\text { Is } p d=\mathbb{E}[\Delta d] \text { ? }
$$

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth

- Menzly, Santos, and Veronesi (2004): $\uparrow p d \Rightarrow \downarrow \mathbb{E}[r]$, but $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$

2. Finding: \downarrow expected growth $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \downarrow expected growth $\Longrightarrow \uparrow$ house prices

$$
\text { Is } p d=\mathbb{E}[\Delta d] ?
$$

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth

- Menzly, Santos, and Veronesi (2004): $\uparrow p d \Rightarrow \downarrow \mathbb{E}[r]$, but $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Lettau and Ludvigson $(2001,2005)$ indirect evidence on $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$

2. Finding: \downarrow expected growth $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \downarrow expected growth $\Longrightarrow \uparrow$ house prices

$$
\text { Is } p d=\mathbb{E}[\Delta d] ?
$$

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth

- Menzly, Santos, and Veronesi (2004): $\uparrow p d \Rightarrow \downarrow \mathbb{E}[r]$, but $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Lettau and Ludvigson $(2001,2005)$ indirect evidence on $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0.40$

2. Finding: \downarrow expected growth $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \downarrow expected growth $\Longrightarrow \uparrow$ house prices

$$
\text { Is } p d=\mathbb{E}[\Delta d] ?
$$

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth

- Menzly, Santos, and Veronesi (2004): $\uparrow p d \Rightarrow \downarrow \mathbb{E}[r]$, but $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Lettau and Ludvigson $(2001,2005)$ indirect evidence on $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0.40$

2. Finding: \downarrow expected growth $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \downarrow expected growth $\Longrightarrow \uparrow$ house prices

$$
\text { Is } p d=\mathbb{E}[\Delta d] ?
$$

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth

- Menzly, Santos, and Veronesi (2004): $\uparrow p d \Rightarrow \downarrow \mathbb{E}[r]$, but $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Lettau and Ludvigson $(2001,2005)$ indirect evidence on $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0.40$

2. Finding: \uparrow equity premium $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \downarrow expected growth $\Longrightarrow \uparrow$ house prices

$$
\text { Is } p d=\mathbb{E}[\Delta d] ?
$$

	Stocks	Housing			
$x^{\text {global }}$	-0.0347^{*}	$0.0241^{* * *}$	$0.0081^{* *}$	0.0435	0.0567^{*}
	$[-1.92]$	$[3.77]$	$[2.26]$	$[1.39]$	$[1.81]$

1. Measure: $\downarrow x_{t}=p d_{t} \Longrightarrow \downarrow$ long-run growth

- Menzly, Santos, and Veronesi (2004): $\uparrow p d \Rightarrow \downarrow \mathbb{E}[r]$, but $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Lettau and Ludvigson $(2001,2005)$ indirect evidence on $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0$
- Binsbergen and Koijen (2010) maximum likelihood estimation \Rightarrow $\operatorname{corr}(\mathbb{E}[r], \mathbb{E}[\Delta d])>0.40$

2. Finding: \uparrow equity premium $\Longrightarrow \downarrow$ housing risk premium
3. Implication: \uparrow equity premium $\Longrightarrow \uparrow$ house prices

Data Generating Process

- All variables are demeaned (r_{f} is constant):

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
p d_{t}=\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[\Delta d_{t+1+j}\right]-\mathbb{E}_{t}\left[r_{t+1+j}^{e}\right]\right)
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[\Delta d_{t+1+j}\right]-\mathbb{E}_{t}\left[r_{t+1+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[\Delta s_{t+1+j}\right]-\mathbb{E}_{t}\left[r_{t+1+j}^{h}\right]\right)
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\mu_{t+1}^{e}=\phi_{e} \cdot \mu_{t}^{e}+\sigma_{e} \cdot \epsilon_{t+1}^{e}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\mu_{t+1}^{e}=0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\begin{aligned}
\mu_{t+1}^{e} & =0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e} \\
\mu_{t+1}^{h} & =\phi_{h} \cdot \mu_{t}^{h}+\sigma_{h} \cdot \epsilon_{t+1}^{h}
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\begin{aligned}
& \mu_{t+1}^{e}=0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e} \\
& \mu_{t+1}^{h}=0.932 \cdot \mu_{t}^{h}+0.016 \cdot \epsilon_{t+1}^{h}
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\begin{aligned}
& \mu_{t+1}^{e}=0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e} \\
& \mu_{t+1}^{h}=0.932 \cdot \mu_{t}^{h}+0.016 \cdot \epsilon_{t+1}^{h} \\
& g_{t+1}^{h}=\phi_{g} \cdot g_{t}+\sigma_{g} \cdot \epsilon_{t+1}^{g}
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\begin{aligned}
& \mu_{t+1}^{e}=0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e} \\
& \mu_{t+1}^{h}=0.932 \cdot \mu_{t}^{h}+0.016 \cdot \epsilon_{t+1}^{h} \\
& g_{t+1}=0.775 \cdot g_{t}+0.179 \cdot 0.048 \cdot \epsilon_{t+1}^{g}
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\begin{aligned}
& \mu_{t+1}^{e}=0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e} \\
& \mu_{t+1}^{h}=0.932 \cdot \mu_{t}^{h}+0.016 \cdot \epsilon_{t+1}^{h} \\
& g_{t+1}^{h}=0.775 \cdot g_{t}+0.009 \cdot \epsilon_{t+1}^{g}
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\sum_{j=0}^{\infty} \rho_{e}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{d}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{e}\right]\right) \\
p s_{t} & =\sum_{j=0}^{\infty} \rho_{h}^{j}\left(\mathbb{E}_{t}\left[g_{t+j}^{s}\right]-\mathbb{E}_{t}\left[\mu_{t+j}^{h}\right]\right)
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\begin{aligned}
& \mu_{t+1}^{e}=0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e} \\
& \mu_{t+1}^{h}=0.932 \cdot \mu_{t}^{h}+0.016 \cdot \epsilon_{t+1}^{h} \\
& g_{t+1}=0.775 \cdot g_{t}+0.009 \cdot \epsilon_{t+1}^{g} \\
& g_{t}^{d}=4.9 \cdot g_{t} \\
& g_{t}^{s}=5 \cdot g_{t}
\end{aligned}
$$

Data Generating Process

- All variables are demeaned (r_{f} is constant):

$$
\begin{aligned}
p d_{t} & =\frac{1}{1-\rho_{e} \cdot \phi_{g}} \cdot g_{t}^{d}-\frac{1}{1-\rho_{e} \cdot \phi_{e}} \cdot \mu_{t}^{e} \\
p s_{t} & =\frac{1}{1-\rho_{h} \cdot \phi_{g}} \cdot g_{t}^{s}-\frac{1}{1-\rho_{h} \cdot \phi_{h}} \cdot \mu_{t}^{h}
\end{aligned}
$$

- g and μ processes similar to Binsbergen and Koijen (2010):

$$
\begin{aligned}
& \mu_{t+1}^{e}=0.932 \cdot \mu_{t}^{e}+0.016 \cdot \epsilon_{t+1}^{e} \\
& \mu_{t+1}^{h}=0.932 \cdot \mu_{t}^{h}+0.016 \cdot \epsilon_{t+1}^{h} \\
& g_{t+1}=0.775 \cdot g_{t}+0.009 \cdot \epsilon_{t+1}^{g} \\
& g_{t}^{d}=4.9 \cdot g_{t} \\
& g_{t}^{s}=5 \cdot g_{t}
\end{aligned}
$$

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications
ϵ^{e}	1				
ϵ^{h}	0.5	1			
ϵ^{g}	0.42	0.42	1		

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications
ϵ^{e}	1			$\rho(p d, g)=0.27$	
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=-0.81$	
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications	
ϵ^{e}	1			$\rho(p d, g)=0.27$	$\rho\left(g, \mu^{h}\right)=0.35$	
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=-0.81$	$\rho(g, p s)=0.36$	
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30	

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications		
ϵ^{e}	1			$\rho(p d, g)=0.27$	$\rho\left(g, \mu^{h}\right)=$	0.35	
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.36
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30		
				$\rho(p d, p s)=$	0.49		
ϵ^{e}	1						
ϵ^{h}	-0.5	1					
ϵ^{g}	0.42	0.42	1				

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.35
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.36
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30		
				$\rho(p d, p s)=$	0.49		
ϵ^{e}	1			$\rho(p d, g)=$	0.27		
ϵ^{h}	-0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81		
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	0.74		
				$\rho(p d, p s)=$	-0.54		

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.35
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.36
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30		
				$\rho(p d, p s)=$	0.49		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.36
ϵ^{h}	-0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.35
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	0.74		
				$\rho(p d, p s)=$	-0.54		

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.35
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.36
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30		
				$\rho(p d, p s)=$	0.49		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.36
ϵ^{h}	-0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.35
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	0.74		
				$\rho(p d, p s)=$	-0.54		
ϵ^{e}	1						
ϵ^{h}	-0.5	1					
ϵ^{g}	0.42	-0.42	1				

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.35
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.36
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30		
				$\rho(p d, p s)=$	0.49		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.36
ϵ^{h}	-0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.35
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	0.74		
				$\rho(p d, p s)=$	-0.54		
ϵ^{e}	1			$\rho(p d, g)=$	0.27		
ϵ^{h}	-0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81		
ϵ^{g}	0.42	-0.42	1	$\rho\left(p d, \mu^{h}\right)=$	0.31		
				$\rho(p d, p s)=$	-0.09		

What would the Econometrician see?

	ϵ^{e}	ϵ^{h}	ϵ^{g}	Empirical Results	Implications		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.35
ϵ^{h}	0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.36
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	-0.30		
				$\rho(p d, p s)=$	0.49		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	0.36
ϵ^{h}	-0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.35
ϵ^{g}	0.42	0.42	1	$\rho\left(p d, \mu^{h}\right)=$	0.74		
				$\rho(p d, p s)=$	-0.54		
ϵ^{e}	1			$\rho(p d, g)=$	0.27	$\rho\left(g, \mu^{h}\right)=$	-0.33
ϵ^{h}	-0.5	1		$\rho\left(p d, \mu^{e}\right)=$	-0.81	$\rho(g, p s)=$	0.74
ϵ^{g}	0.42	-0.42	1	$\rho\left(p d, \mu^{h}\right)=$	0.31		
				$\rho(p d, p s)=$	-0.09		

Outline

> The Paper

> Major Comments

Minor Comments

Final Remarks

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_{t} in equation 1 , but $x_{t}=p d_{t}$ after

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_{t} in equation 1 , but $x_{t}=p d_{t}$ after
- Table 3: Lack of predictability in roughly 50% of the industries

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_{t} in equation 1 , but $x_{t}=p d_{t}$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of $x_{t}^{c f}$ should be central to analysis

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_{t} in equation 1 , but $x_{t}=p d_{t}$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of $x_{t}^{c f}$ should be central to analysis
- ICAPM vs CAPM

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_{t} in equation 1 , but $x_{t}=p d_{t}$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of $x_{t}^{c f}$ should be central to analysis
- ICAPM vs CAPM
- Weak relation between $\mathbb{E}[r]$ and σ (see Campbell et al (2017))

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_{t} in equation 1 , but $x_{t}=p d_{t}$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of $x_{t}^{c f}$ should be central to analysis
- ICAPM vs CAPM
- Weak relation between $\mathbb{E}[r]$ and σ (see Campbell et al (2017))
- Tables 5 and 7 use different clustering methods

Some Comments on the Empirical Analysis

- Repeat-sales method. predictability for $r_{t+1 \rightarrow t+2}$
- Campbell-Shiller valuation identity requires either dividends or net payout (not total payout)
- Confusing notation: x_{t} in equation 1 , but $x_{t}=p d_{t}$ after
- Table 3: Lack of predictability in roughly 50% of the industries
- A version of $x_{t}^{c f}$ should be central to analysis
- ICAPM vs CAPM
- Weak relation between $\mathbb{E}[r]$ and σ (see Campbell et al (2017))
- Tables 5 and 7 use different clustering methods
- Some of the control variables (such as business cycle $\beta \mathbf{s}$) are estimated. System GMM for standard errors.

Some Comments on the Model

- i.i.d shocks $=$ Business Cycle Shocks?

Some Comments on the Model

- i.i.d shocks $=$ Business Cycle Shocks?
- Can you generalize the Δs process to have non-zero ϕ in bad times? Identification (equation 12) seems to depend heavily on this assumption

Some Comments on the Model

- i.i.d shocks $=$ Business Cycle Shocks?
- Can you generalize the Δs process to have non-zero ϕ in bad times? Identification (equation 12) seems to depend heavily on this assumption
- What is the role of MSA specific non-housing goods?

Outline

> The Paper

> Major Comments

> Minor Comments

Final Remarks

Final Remarks

- Paper is very interesting: important question!

Final Remarks

- Paper is very interesting: important question!
- Needs to better disentangle the difference between expected growth and expected returns

Final Remarks

- Paper is very interesting: important question!
- Needs to better disentangle the difference between expected growth and expected returns
- Good luck!

