Expectations in the Cross Section:

Stock Price Reaction to the Information in Bias and Analyst-Expected Returns

Author: Johnathan A. Loudis

Discussant: Andrei S. Gonçalves

March 2019

The Paper in a Nutshell...

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid F_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Paper in a Nutshell... } \\
& \begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
\end{aligned}
$$

- The market-based expected return can be inferred by the investor

The Paper in a Nutshell...

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid F_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information

The Paper in a Nutshell...

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid F_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information
- The analyst's bias captures how her reporting deviates from the rational expectation giving her information set

The Paper in a Nutshell...

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid F_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information
- The analyst's bias captures how her reporting deviates from the rational expectation giving her information set
- The investors should update his expectation once \bar{R}_{t}^{A} is reported. However, he should only react to the information component, not to the bias

Estimating the Bias

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid F_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
$$

- Note that the investor can only observe the spread $S_{t}=\bar{R}_{t}^{A}-\mathbb{E}_{t}\left[R_{t+1} \mid F_{t}^{M}\right]$
not the information or the bias separately (depend on \mathcal{F}_{t}^{A})

Estimating the Bias

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
$$

- Note that the investor can only observe the spread $S_{t}=\bar{R}_{t}^{A}-\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ not the information or the bias separately (depend on \mathcal{F}_{t}^{A})
- Projecting the spread onto \mathcal{F}_{t}^{M} yields

$$
S_{t}=\mathbb{E}\left[S_{t} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}
$$

Estimating the Bias

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\bar{R}_{t}^{A}-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]
\end{aligned}
$$

- Note that the investor can only observe the spread $S_{t}=\bar{R}_{t}^{A}-\mathbb{E}_{t}\left[R_{t+1} \mid F_{t}^{M}\right]$ not the information or the bias separately (depend on \mathcal{F}_{t}^{A})
- Projecting the spread onto \mathcal{F}_{t}^{M} yields
$S_{t}=\mathbb{E}\left[S_{t} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}$
- So, the investor has an estimate for the bias, $b_{t}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]$
which he should use to update his original expectation

Estimating the Bias

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +b_{t}
\end{aligned}
$$

- Note that the investor can only observe the spread $S_{t}=\bar{R}_{t}^{A}-\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ not the information or the bias separately (depend on \mathcal{F}_{t}^{A})
- Projecting the spread onto \mathcal{F}_{t}^{M} yields

$$
S_{t}=\mathbb{E}\left[S_{t} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}
$$

- So, the investor has an estimate for the bias, $b_{t}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]$ which he should use to update his original expectation

Estimating the Bias

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{A}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\text { Noise } \\
& +b_{t}
\end{aligned}
$$

- Note that the investor can only observe the spread $S_{t}=\bar{R}_{t}^{A}-\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ not the information or the bias separately (depend on \mathcal{F}_{t}^{A})
- Projecting the spread onto \mathcal{F}_{t}^{M} yields

$$
S_{t}=\mathbb{E}\left[S_{t} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}
$$

- So, the investor has an estimate for the bias, $b_{t}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]$ which he should use to update his original expectation

Estimating the Bias

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +i_{t} \\
& +b_{t}
\end{aligned}
$$

- Note that the investor can only observe the spread $S_{t}=\bar{R}_{t}^{A}-\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ not the information or the bias separately (depend on \mathcal{F}_{t}^{A})
- Projecting the spread onto \mathcal{F}_{t}^{M} yields

$$
S_{t}=\mathbb{E}\left[S_{t} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]+\epsilon_{\mathrm{t}}
$$

- So, the investor has an estimate for the bias, $b_{t}=\mathbb{E}\left[\operatorname{Bias} \mid \mathcal{F}_{t}^{M}\right]$ which he should use to update his original expectation

Bayesian Updating of Expected Returns

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +i_{t} \\
& +b_{t}
\end{aligned}
$$

Bayesian Updating of Expected Returns

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +i_{t} \\
& +b_{t}
\end{aligned}
$$

- Old expectation: $\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$

Bayesian Updating of Expected Returns

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +i_{t} \\
& +b_{t}
\end{aligned}
$$

- Old expectation: $\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$
- Signal: $\bar{R}_{t}^{A}-b_{t}=\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+i_{t}$

Bayesian Updating of Expected Returns

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +i_{t} \\
& +b_{t}
\end{aligned}
$$

- Old expectation: $\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$
- Signal: $\bar{R}_{t}^{A}-b_{t}=\mathbb{E}_{t}\left[R_{t+1} \mid F_{t}^{M}\right]+i_{t}$
- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=(1-\theta) \cdot \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot\left(\bar{R}_{t}^{A}-b_{t}\right)
$$

Bayesian Updating of Expected Returns

$$
\begin{aligned}
\bar{R}_{t}^{A}= & \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right] \\
& +i_{t} \\
& +b_{t}
\end{aligned}
$$

- Old expectation: $\mathbb{E}_{t}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$
- Signal: $\bar{R}_{t}^{A}-b_{t}=\mathbb{E}_{t}\left[R_{t+1} \mid F_{t}^{M}\right]+i_{t}$
- A Bayesian investor would update:

$$
\begin{aligned}
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right] & =(1-\theta) \cdot \mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot\left(\bar{R}_{t}^{A}-b_{t}\right) \\
& =\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
\end{aligned}
$$

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

- The paper makes three assumptions

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

- The paper makes three assumptions

1. If the investor is not Bayesian, then he update as:

$$
\widehat{\mathbb{E}}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

- The paper makes three assumptions

1. If the investor is not Bayesian, then he update as:

$$
\widehat{\mathbb{E}}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

2. Prices are not expected to change: $\widehat{\mathbb{E}}\left[P_{t+1} \mid \mathcal{F}_{t}\right]=P_{t}$

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

- The paper makes three assumptions

1. If the investor is not Bayesian, then he update as:

$$
\widehat{\mathbb{E}}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

2. Prices are not expected to change: $\widehat{\mathbb{E}}\left[P_{t+1} \mid \mathcal{F}_{t}\right]=P_{t}$
3. No new information during the announcement month:

$$
\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]=\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]
$$

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

- The paper makes three assumptions

1. If the investor is not Bayesian, then he update as:

$$
\widehat{\mathbb{E}}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

2. Prices are not expected to change: $\widehat{\mathbb{E}}\left[P_{t+1} \mid \mathcal{F}_{t}\right]=P_{t}$
3. No new information during the announcement month:

$$
\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]=\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]
$$

- The implications to test whether the investor is Bayesian:

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

- The paper makes three assumptions

1. If the investor is not Bayesian, then he update as:

$$
\widehat{\mathbb{E}}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

2. Prices are not expected to change: $\widehat{\mathbb{E}}\left[P_{t+1} \mid \mathcal{F}_{t}\right]=P_{t}$
3. No new information during the announcement month:

$$
\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]=\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]
$$

- The implications to test whether the investor is Bayesian:

$$
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

Assumptions and Empirical Implications

- A Bayesian investor would update:

$$
\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\theta \cdot i_{t}
$$

- The paper makes three assumptions

1. If the investor is not Bayesian, then he update as:

$$
\widehat{\mathbb{E}}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]+\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

2. Prices are not expected to change: $\widehat{\mathbb{E}}\left[P_{t+1} \mid \mathcal{F}_{t}\right]=P_{t}$
3. No new information during the announcement month:

$$
\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]=\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]
$$

- The implications to test whether the investor is Bayesian:

$$
\begin{gathered}
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t} \\
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
\end{gathered}
$$

Main Result

$$
\begin{gathered}
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t} \\
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
\end{gathered}
$$

Outline

The Paper

Comments

Final Remarks

Assumptions 2 and 3

- Assumptions 2 and 3 effectively imply $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ and that is why you do not need to control for $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in:

$$
\begin{gathered}
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t} \\
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
\end{gathered}
$$

Assumptions 2 and 3

- Assumptions 2 and 3 effectively imply $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ and that is why you do not need to control for $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in:

$$
\begin{gathered}
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t} \\
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
\end{gathered}
$$

- Inconsistent methodology: uses $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ to get b_{t}, but then assumes $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ for the test

Assumptions 2 and 3

- Assumptions 2 and 3 effectively imply $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ and that is why you do not need to control for $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in:

$$
\begin{gathered}
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t} \\
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
\end{gathered}
$$

- Inconsistent methodology: uses $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ to get b_{t}, but then assumes $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ for the test
- Correlation between $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ and i_{t} or b_{t} is a problem

Assumptions 2 and 3

- Assumptions 2 and 3 effectively imply $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ and that is why you do not need to control for $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in:

$$
\begin{gathered}
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t} \\
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
\end{gathered}
$$

- Inconsistent methodology: uses $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ to get b_{t}, but then assumes $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ for the test
- Correlation between $\mathbb{E}\left[R_{t+1} \mid F_{t}^{M}\right]$ and i_{t} or b_{t} is a problem
- In the simple (no discount) model:

$$
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]-\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

$$
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]-\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
$$

Assumptions 2 and 3

- Assumptions 2 and 3 effectively imply $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ and that is why you do not need to control for $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in:

$$
\begin{gathered}
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t} \\
\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}
\end{gathered}
$$

- Inconsistent methodology: uses $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ to get b_{t}, but then assumes $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ for the test
- Correlation between $\mathbb{E}\left[R_{t+1} \mid F_{t}^{M}\right]$ and i_{t} or b_{t} is a problem
- In the simple (no discount) model:

$$
\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]-\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=\delta_{n} \cdot i_{t}+\gamma_{n} \cdot b_{t}
$$

$\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}, \bar{R}_{t}^{A}\right]-\mathbb{E}\left[R_{t, t+n}-R_{t, t} \mid \mathcal{F}_{t}^{M}\right]=\left(\delta_{n}-\delta_{0}\right) \cdot i_{t}+\left(\gamma_{n}-\gamma_{0}\right) \cdot b_{t}$

- Use this test (with your $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$, not from Kelly et al)

Assumption 3

- Assumption 3 is needed beyond $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ (even in the model with discounting)

Assumption 3

- Assumption 3 is needed beyond $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ (even in the model with discounting)
- You need $\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to be zero (or orthogonal to b_{t}, i_{t}) because otherwise returns might be responding to this information as opposed to b_{t}, i_{t}

Assumption 3

- Assumption 3 is needed beyond $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ (even in the model with discounting)
- You need $\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to be zero (or orthogonal to b_{t}, i_{t}) because otherwise returns might be responding to this information as opposed to b_{t}, i_{t}
- But price updates are likely to be endogenous to information arrival

Assumption 3

- Assumption 3 is needed beyond $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ (even in the model with discounting)
- You need $\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to be zero (or orthogonal to b_{t}, i_{t}) because otherwise returns might be responding to this information as opposed to b_{t}, i_{t}
- But price updates are likely to be endogenous to information arrival
- A price update for Google when nothing happens probably has a different informativeness than a price update after Google announces a new technology

Assumption 3

- Assumption 3 is needed beyond $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]=0$ (even in the model with discounting)
- You need $\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[P_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to be zero (or orthogonal to b_{t}, i_{t}) because otherwise returns might be responding to this information as opposed to b_{t}, i_{t}
- But price updates are likely to be endogenous to information arrival
- A price update for Google when nothing happens probably has a different informativeness than a price update after Google announces a new technology
- You should at least provide robustness in which $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ is controlled for in the regressions

Alternative i_{t} Measure

- For the \bar{i}_{t} measure, the assumption is that the bias contained in the "stale" prices is the same as the one contained in the updated prices

Alternative i_{t} Measure

- For the \bar{i}_{t} measure, the assumption is that the bias contained in the "stale" prices is the same as the one contained in the updated prices
- Can you check this assumption by showing that $\widetilde{R}_{t}-\bar{R}_{t}$ does not systematically over/under predict for different subgroups of stocks?

Alternative i_{t} Measure

- For the \bar{i}_{t} measure, the assumption is that the bias contained in the "stale" prices is the same as the one contained in the updated prices
- Can you check this assumption by showing that $\widetilde{R}_{t}-\bar{R}_{t}$ does not systematically over/under predict for different subgroups of stocks?
- My prior is that there is still bias. If I am wrong, this is a separate contribution as you will demonstrate how to extract the bias of analysts expected returns in a model-free manner

Other Comments...

- Double sorted portfolios to control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ and $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$

Other Comments...

- Double sorted portfolios to control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ and $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))

Other Comments...

- Double sorted portfolios to control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ and $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to i_{t} is stronger among smaller stocks while overreaction to b_{t} is stronger among larger stocks. Why?

Other Comments...

- Double sorted portfolios to control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ and $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to i_{t} is stronger among smaller stocks while overreaction to b_{t} is stronger among larger stocks. Why?
- Overreaction disappears in the second half of the sample (as investors learn) while underreaction remains strong. What can we learn from this?

Other Comments...

- Double sorted portfolios to control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]$ and $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to i_{t} is stronger among smaller stocks while overreaction to b_{t} is stronger among larger stocks. Why?
- Overreaction disappears in the second half of the sample (as investors learn) while underreaction remains strong. What can we learn from this?
- Can you use the b_{t} and i_{t} to explain other short-lived anomalies?

Outline

The Paper

Comments

Final Remarks

Final Remarks

- The paper is quite polished and well written

Final Remarks

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.

Final Remarks

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:

Final Remarks

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
- Directly account for the correlation between b_{t}, i_{t}, and $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in the main analysis

Final Remarks

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
- Directly account for the correlation between b_{t}, i_{t}, and $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in the main analysis
- Control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to minimize concerns with Assumption 3

Final Remarks

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
- Directly account for the correlation between b_{t}, i_{t}, and $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in the main analysis
- Control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to minimize concerns with Assumption 3
- Show that $\bar{i}=\widetilde{R}_{t}-\bar{R}_{t}$ does not contain any bias

Final Remarks

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
- Directly account for the correlation between b_{t}, i_{t}, and $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in the main analysis
- Control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to minimize concerns with Assumption 3
- Show that $\bar{i}=\widetilde{R}_{t}-\bar{R}_{t}$ does not contain any bias
- Perform some adjustments to the portfolio sorting exercise

Final Remarks

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
- Directly account for the correlation between b_{t}, i_{t}, and $\mathbb{E}\left[R_{t, t+n} \mid \mathcal{F}_{t}^{M}\right]$ in the main analysis
- Control for $\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t}^{M}\right]-\mathbb{E}\left[R_{t+1} \mid \mathcal{F}_{t-1}^{M}\right]$ to minimize concerns with Assumption 3
- Show that $\bar{i}=\widetilde{R}_{t}-\bar{R}_{t}$ does not contain any bias
- Perform some adjustments to the portfolio sorting exercise
- Good luck!

