

Expectations in the Cross Section: Stock Price Reaction to the Information in Bias and Analyst-Expected Returns

Author: Johnathan A. Loudis

Discussant: Andrei S. Gonçalves

March 2019

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information
- The analyst's bias captures how her reporting deviates from the rational expectation giving her information set
- The investors should update his expectation once R^A_t is reported. However, he should only react to the information component, not to the bias

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information
- The analyst's bias captures how her reporting deviates from the rational expectation giving her information set
- The investors should update his expectation once R^A_t is reported. However, he should only react to the information component, not to the bias

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information
- The analyst's bias captures how her reporting deviates from the rational expectation giving her information set
- The investors should update his expectation once R^A_t is reported. However, he should only react to the information component, not to the bias

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information
- The analyst's bias captures how her reporting deviates from the rational expectation giving her information set
- The investors should update his expectation once R^A_t is reported. However, he should only react to the information component, not to the bias

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- The market-based expected return can be inferred by the investor
- The analyst's information component captures the (potential) improvement in estimating expected returns due to her superior information
- The analyst's bias captures how her reporting deviates from the rational expectation giving her information set
- The investors should update his expectation once \overline{R}_t^A is reported. However, he should only react to the information component, not to the bias

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- Note that the investor can only observe the spread
 S_t = R_t^A E_t[R_{t+1}|F_t^M]
 not the information or the bias separately (depend on F_t^A)
- Projecting the spread onto \mathcal{F}_t^M yields $S_t = \mathbb{E}[S_t | \mathcal{F}_t^M] + \epsilon_t = \mathbb{E}[\text{Bias} | \mathcal{F}_t^M] + \epsilon_t$
- So, the investor has an estimate for the bias, $b_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M]$ which he should use to update his original expectation

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- Note that the investor can only observe the spread
 S_t = R_t^A E_t[R_{t+1}|F_t^M]
 not the information or the bias separately (depend on F_t^A)
- Projecting the spread onto \mathcal{F}_t^M yields $S_t = \mathbb{E}[S_t | \mathcal{F}_t^M] + \epsilon_t = \mathbb{E}[\text{Bias} | \mathcal{F}_t^M] + \epsilon_t$
- So, the investor has an estimate for the bias,
 b_t = E[Bias|F^M_t]
 which he should use to update his original expectation

$$\begin{aligned} \overline{R}_{t}^{A} &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] \\ &+ \overline{R}_{t}^{A} - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] \end{aligned}$$

- Note that the investor can only observe the spread
 S_t = R_t^A E_t[R_{t+1}|F_t^M]
 not the information or the bias separately (depend on F_t^A)
- Projecting the spread onto \mathcal{F}_t^M yields $S_t = \mathbb{E}[S_t | \mathcal{F}_t^M] + \epsilon_t = \mathbb{E}[\text{Bias} | \mathcal{F}_t^M] + \epsilon_t$
- So, the investor has an estimate for the bias, $b_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M]$

which he should use to update his original expectation

$$\overline{R}_{t}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \frac{b_{t}}{b_{t}}$$

- Note that the investor can only observe the spread
 S_t = R_t^A E_t[R_{t+1}|F_t^M]
 not the information or the bias separately (depend on F_t^A)
- Projecting the spread onto \mathcal{F}_t^M yields $S_t = \mathbb{E}[S_t | \mathcal{F}_t^M] + \epsilon_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M] + \epsilon_t$
- So, the investor has an estimate for the bias, $b_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M]$ which he chould use to undete his original expectation

which he should use to update his original expectation

$$\overline{R}_{t}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{A}] - \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \text{Noise} + b_{t}$$

- Note that the investor can only observe the spread $S_t = \overline{R}_t^A - \mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M]$ not the information or the bias separately (depend on \mathcal{F}_t^A)
- Projecting the spread onto \mathcal{F}_t^M yields $S_t = \mathbb{E}[S_t | \mathcal{F}_t^M] + \epsilon_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M] + \epsilon_t$
- So, the investor has an estimate for the bias, $b_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M]$ which he chould use to undate his original expectation

which he should use to update his original expectation

$$\overline{R}_{t}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + i_{t} + b_{t}$$

- Note that the investor can only observe the spread $S_t = \overline{R}_t^A - \mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M]$ not the information or the bias separately (depend on \mathcal{F}_t^A)
- Projecting the spread onto \mathcal{F}_t^M yields $S_t = \mathbb{E}[S_t | \mathcal{F}_t^M] + \epsilon_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M] + \epsilon_t$
- So, the investor has an estimate for the bias, $b_t = \mathbb{E}[\text{Bias}|\mathcal{F}_t^M]$ which he should use to update his original expectation

Bayesian Updating of Expected Returns $\overline{R}_{t}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + i_{t} + b_{t}$

- Old expectation: $\mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M]$
- Signal: $\overline{R}_t^A b_t = \mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M] + i_t$
- A Bayesian investor would update:

 $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = (1-\theta) \cdot \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot (\overline{R}_t^A - b_t)$

Bayesian Updating of Expected Returns $\overline{R}_{t}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}]$

- $+ i_t$ $+ b_t$
- Old expectation: $\mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M]$
- Signal: $\overline{R}_t^{\mathcal{A}} b_t = \mathbb{E}_t[R_{t+1}|\mathcal{F}_t^{\mathcal{M}}] + i_t$
- A Bayesian investor would update:

 $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = (1-\theta) \cdot \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot (\overline{R}_t^A - b_t)$

Bayesian Updating of Expected Returns

$$\overline{R}_{t}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \frac{i_{t}}{t} + \frac{b_{t}}{t}$$

• Old expectation: $\mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M]$

• Signal:
$$\overline{R}_t^A - \frac{b_t}{b_t} = \mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M] + i_t$$

• A Bayesian investor would update:

 $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = (1-\theta) \cdot \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot (\overline{R}_t^A - b_t)$

Bayesian Updating of Expected Returns $\overline{R}_{\star}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}]$

$$R_t^{\prime \prime} = \mathbb{E}[R_{t+1}|\mathcal{F}_t^{\prime \prime}] + i_t + b_t$$

- Old expectation: $\mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M]$
- Signal: $\overline{R}_t^A b_t = \mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M] + i_t$
- A Bayesian investor would update:

$$\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = (1-\theta) \cdot \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot (\overline{R}_t^A - b_t)$$

Bayesian Updating of Expected Returns $\overline{R}_{\star}^{A} = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}]$

$$R_t = \mathbb{E}[R_{t+1}|\mathcal{F}_t^n] + i_t + b_t$$

- Old expectation: $\mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M]$
- Signal: $\overline{R}_t^A b_t = \mathbb{E}_t[R_{t+1}|\mathcal{F}_t^M] + i_t$
- A Bayesian investor would update:

$$\begin{split} \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M},\overline{R}_{t}^{A}] &= (1-\theta) \cdot \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \theta \cdot (\overline{R}_{t}^{A} - b_{t}) \\ &= \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \theta \cdot i_{t} \end{split}$$

• A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$

The paper makes three assumptions

- A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$
- The paper makes three assumptions

If the investor is not Bayesian, then he update as: $\widehat{\mathbb{E}}[R_{t,t+n}|\mathcal{F}_{t}^{M},\overline{R}_{t}^{A}] = \mathbb{E}[R_{t+1}|\mathcal{F}_{t}^{M}] + \delta_{n} \cdot i_{t} + \gamma_{n}$

- 2. Prices are not expected to change: $\widehat{\mathbb{E}}[P_{t+1}|\mathcal{F}_t] = P_t$
- 3. No new information during the announcement month:

 $\mathbb{E}[P_{t+1}|\mathcal{F}_t^M] = \mathbb{E}[P_{t+1}|\mathcal{F}_{t-1}^M]$

- A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$
- The paper makes three assumptions

1. If the investor is not Bayesian, then he update as:

 $\widehat{\mathbb{E}}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$

2. Prices are not expected to change: $\widehat{\mathbb{E}}[P_{t+1}|\mathcal{F}_t] = P_t$

3. No new information during the announcement month:

 $\mathbb{E}[P_{t+1}|\mathcal{F}_t^M] = \mathbb{E}[P_{t+1}|\mathcal{F}_{t-1}^M]$

- A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$
- The paper makes three assumptions
 - 1. If the investor is not Bayesian, then he update as:

 $\widehat{\mathbb{E}}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$

2. Prices are not expected to change: $\widehat{\mathbb{E}}[P_{t+1}|\mathcal{F}_t] = P_t$

3. No new information during the announcement month:

 $\mathbb{E}[P_{t+1}|\mathcal{F}_t^M] = \mathbb{E}[P_{t+1}|\mathcal{F}_{t-1}^M]$

- A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$
- The paper makes three assumptions
 - 1. If the investor is not Bayesian, then he update as:

 $\widehat{\mathbb{E}}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$

- 2. Prices are not expected to change: $\widehat{\mathbb{E}}[P_{t+1}|\mathcal{F}_t] = P_t$
- 3. No new information during the announcement month:

$$\mathbb{E}[P_{t+1}|\mathcal{F}_t^M] = \mathbb{E}[P_{t+1}|\mathcal{F}_{t-1}^M]$$

- A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$
- The paper makes three assumptions
 - 1. If the investor is not Bayesian, then he update as:

 $\widehat{\mathbb{E}}[R_{t,t+n}|\mathcal{F}_t^M,\overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \delta_n \cdot i_t + \gamma_n \cdot \frac{b_t}{b_t}$

- 2. Prices are not expected to change: $\widehat{\mathbb{E}}[P_{t+1}|\mathcal{F}_t] = P_t$
- 3. No new information during the announcement month:

$$\mathbb{E}[P_{t+1}|\mathcal{F}_t^M] = \mathbb{E}[P_{t+1}|\mathcal{F}_{t-1}^M]$$

• The implications to test whether the investor is Bayesian:

 $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M,\overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot b_t$

 $\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$

- A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$
- The paper makes three assumptions
 - 1. If the investor is not Bayesian, then he update as:

 $\widehat{\mathbb{E}}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$

- 2. Prices are not expected to change: $\widehat{\mathbb{E}}[P_{t+1}|\mathcal{F}_t] = P_t$
- 3. No new information during the announcement month:

$$\mathbb{E}[P_{t+1}|\mathcal{F}_t^M] = \mathbb{E}[P_{t+1}|\mathcal{F}_{t-1}^M]$$

• The implications to test whether the investor is Bayesian:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot b_t$$

 $\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$

- A Bayesian investor would update: $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \theta \cdot i_t$
- The paper makes three assumptions
 - 1. If the investor is not Bayesian, then he update as:

 $\widehat{\mathbb{E}}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \mathbb{E}[R_{t+1}|\mathcal{F}_t^M] + \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$

- 2. Prices are not expected to change: $\widehat{\mathbb{E}}[P_{t+1}|\mathcal{F}_t] = P_t$
- 3. No new information during the announcement month:

$$\mathbb{E}[P_{t+1}|\mathcal{F}_t^M] = \mathbb{E}[P_{t+1}|\mathcal{F}_{t-1}^M]$$

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot b_t$$
$$\mathbb{E}[R_{t,t+n} - R_{t,t}|\mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$$

Main Result

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot b_t$$
$$\mathbb{E}[R_{t,t+n} - R_{t,t}|\mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$$

Outline

The Paper

Comments

• Assumptions 2 and 3 effectively imply $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ and that is why you do not need to control for $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M,\overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$$

$$\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$$

- Inconsistent methodology: uses E[R_{t+1}|F_t^M] to get b_t, but then assumes E[R_{t,t+n}|F_t^M] = 0 for the test
- Correlation between $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and i_t or b_t is a problem
- In the simple (no discount) model:

• Assumptions 2 and 3 effectively imply $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ and that is why you do not need to control for $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot b_t$$

$$\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$$

- Inconsistent methodology: uses $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ to get b_t , but then assumes $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ for the test
- Correlation between $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and i_t or b_t is a problem
- In the simple (no discount) model:

• Assumptions 2 and 3 effectively imply $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ and that is why you do not need to control for $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$$

$$\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$$

- Inconsistent methodology: uses $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ to get b_t , but then assumes $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ for the test
- Correlation between $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and i_t or b_t is a problem

In the simple (no discount) model:

• Assumptions 2 and 3 effectively imply $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ and that is why you do not need to control for $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$$

 $\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$

- Inconsistent methodology: uses $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ to get b_t , but then assumes $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ for the test
- Correlation between $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and i_t or b_t is a problem
- In the simple (no discount) model:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] - \mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = \delta_n \cdot i_t + \gamma_n \cdot b_t$$

 $\mathbb{E}[R_{t,t+n} - R_{t,t}|\mathcal{F}_t^M, \overline{R}_t^A] - \mathbb{E}[R_{t,t+n} - R_{t,t}|\mathcal{F}_t^M] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$

• Assumptions 2 and 3 effectively imply $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ and that is why you do not need to control for $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] = \delta_n \cdot i_t + \gamma_n \cdot \mathbf{b}_t$$

$$\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$$

- Inconsistent methodology: uses $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ to get b_t , but then assumes $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ for the test
- Correlation between $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and i_t or b_t is a problem
- In the simple (no discount) model:

$$\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M, \overline{R}_t^A] - \mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = \delta_n \cdot i_t + \gamma_n \cdot b_t$$

 $\mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M, \overline{R}_t^A] - \mathbb{E}[R_{t,t+n} - R_{t,t} | \mathcal{F}_t^M] = (\delta_n - \delta_0) \cdot i_t + (\gamma_n - \gamma_0) \cdot b_t$

- Assumption 3 is needed beyond $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ (even in the model with discounting)
- You need E[P_{t+1}|F^M_t] − E[P_{t+1}|F^M_{t-1}] to be zero (or orthogonal to b_t, i_t) because otherwise returns might be responding to this information as opposed to b_t, i_t
- But price updates are likely to be endogenous to information arrival
- A price update for Google when nothing happens probably has a different informativeness than a price update after Google announces a new technology
- You should at least provide robustness in which $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ is controlled for in the regressions

- Assumption 3 is needed beyond $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ (even in the model with discounting)
- You need E[P_{t+1}|F^M_t] − E[P_{t+1}|F^M_{t-1}] to be zero (or orthogonal to b_t, i_t) because otherwise returns might be responding to this information as opposed to b_t, i_t
- But price updates are likely to be endogenous to information arrival
- A price update for Google when nothing happens probably has a different informativeness than a price update after Google announces a new technology
- You should at least provide robustness in which $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ is controlled for in the regressions

- Assumption 3 is needed beyond $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ (even in the model with discounting)
- You need E[P_{t+1}|F^M_t] − E[P_{t+1}|F^M_{t-1}] to be zero (or orthogonal to b_t, i_t) because otherwise returns might be responding to this information as opposed to b_t, i_t
- But price updates are likely to be endogenous to information arrival
- A price update for Google when nothing happens probably has a different informativeness than a price update after Google announces a new technology
- You should at least provide robustness in which $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ is controlled for in the regressions

- Assumption 3 is needed beyond $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ (even in the model with discounting)
- You need E[P_{t+1}|F^M_t] − E[P_{t+1}|F^M_{t-1}] to be zero (or orthogonal to b_t, i_t) because otherwise returns might be responding to this information as opposed to b_t, i_t
- But price updates are likely to be endogenous to information arrival
- A price update for Google when nothing happens probably has a different informativeness than a price update after Google announces a new technology
- You should at least provide robustness in which $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ is controlled for in the regressions

- Assumption 3 is needed beyond $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M] = 0$ (even in the model with discounting)
- You need E[P_{t+1}|F^M_t] − E[P_{t+1}|F^M_{t-1}] to be zero (or orthogonal to b_t, i_t) because otherwise returns might be responding to this information as opposed to b_t, i_t
- But price updates are likely to be endogenous to information arrival
- A price update for Google when nothing happens probably has a different informativeness than a price update after Google announces a new technology
- You should at least provide robustness in which $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ is controlled for in the regressions

Alternative *i*_t Measure

- For the \bar{i}_t measure, the assumption is that the bias contained in the "stale" prices is the same as the one contained in the updated prices
- Can you check this assumption by showing that $\tilde{R}_t \bar{R}_t$ does not systematically over/under predict for different subgroups of stocks?
- My prior is that there is still bias. If I am wrong, this is a separate contribution as you will demonstrate how to extract the bias of analysts expected returns in a model-free manner

Alternative i_t Measure

- For the \overline{i}_t measure, the assumption is that the bias contained in the "stale" prices is the same as the one contained in the updated prices
- Can you check this assumption by showing that $\tilde{R}_t \overline{R}_t$ does not systematically over/under predict for different subgroups of stocks?
- My prior is that there is still bias. If I am wrong, this is a separate contribution as you will demonstrate how to extract the bias of analysts expected returns in a model-free manner

Alternative *i*_t Measure

- For the \overline{i}_t measure, the assumption is that the bias contained in the "stale" prices is the same as the one contained in the updated prices
- Can you check this assumption by showing that $\tilde{R}_t \overline{R}_t$ does not systematically over/under predict for different subgroups of stocks?
- My prior is that there is still bias. If I am wrong, this is a separate contribution as you will demonstrate how to extract the bias of analysts expected returns in a model-free manner

- Double sorted portfolios to control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to *i_t* is stronger among smaller stocks while overreaction to *b_t* is stronger among larger stocks. Why?
- Overreaction disappears in the second half of the sample (as investors learn) while underreaction remains strong. What can we learn from this?
- Can you use the b_t and i_t to explain other short-lived anomalies?

- Double sorted portfolios to control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to *i_t* is stronger among smaller stocks while overreaction to *b_t* is stronger among larger stocks. Why?
- Overreaction disappears in the second half of the sample (as investors learn) while underreaction remains strong. What can we learn from this?
- Can you use the b_t and i_t to explain other short-lived anomalies?

- Double sorted portfolios to control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to *i_t* is stronger among smaller stocks while overreaction to *b_t* is stronger among larger stocks. Why?
- Overreaction disappears in the second half of the sample (as investors learn) while underreaction remains strong. What can we learn from this?
- Can you use the b_t and i_t to explain other short-lived anomalies?

- Double sorted portfolios to control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to *i_t* is stronger among smaller stocks while overreaction to *b_t* is stronger among larger stocks. Why?
- Overreaction disappears in the second half of the sample (as investors learn) while underreaction remains strong. What can we learn from this?
- Can you use the b_t and i_t to explain other short-lived anomalies?

- Double sorted portfolios to control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M]$ and $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$
- Use NYSE Breakpoints for value-weighted portfolios and exclude microcaps for equal-weighted portfolios (Hou, Xue, and Zhang (2017))
- Underreaction to *i_t* is stronger among smaller stocks while overreaction to *b_t* is stronger among larger stocks. Why?
- Overreaction disappears in the second half of the sample (as investors learn) while underreaction remains strong. What can we learn from this?
- Can you use the b_t and i_t to explain other short-lived anomalies?

Outline

The Paper

Comments

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
 - Directly account for the correlation between b_t , i_t , and $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in the main analysis
 - Control for E[R_{t+1}|F^M_t] − E[R_{t+1}|F^M_{t−1}] to minimize concerns with Assumption 3
 - Show that $\overline{i} = \widetilde{R}_t \overline{R}_t$ does not contain any bias
 - Perform some adjustments to the portfolio sorting exercise
- Good luck!

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
 - Directly account for the correlation between b_t , i_t , and $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in the main analysis
 - Control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ to minimize concerns with Assumption 3
 - Show that $\overline{i} = \widetilde{R}_t \overline{R}_t$ does not contain any bias
 - Perform some adjustments to the portfolio sorting exercise
- Good luck!

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
 - Directly account for the correlation between b_t , i_t , and $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in the main analysis
 - Control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ to minimize concerns with Assumption 3
 - Show that $\overline{i} = R_t \overline{R}_t$ does not contain any bias
 - Perform some adjustments to the portfolio sorting exercise
- Good luck!

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
 - Directly account for the correlation between b_t , i_t , and $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in the main analysis
 - Control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ to minimize concerns with Assumption 3
 - Show that $\overline{i} = \widetilde{R}_t \overline{R}_t$ does not contain any bias
 - Perform some adjustments to the portfolio sorting exercise

Good luck!

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
 - Directly account for the correlation between b_t , i_t , and $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in the main analysis
 - Control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ to minimize concerns with Assumption 3
 - Show that $\overline{i} = \widetilde{R}_t \overline{R}_t$ does not contain any bias
 - Perform some adjustments to the portfolio sorting exercise

Good luck!

- The paper is quite polished and well written
- It provides a systematic analysis of over and underreaction in which the underlying information framework is specified seriously to guide the empirical analysis.
- It would be useful to:
 - Directly account for the correlation between b_t , i_t , and $\mathbb{E}[R_{t,t+n}|\mathcal{F}_t^M]$ in the main analysis
 - Control for $\mathbb{E}[R_{t+1}|\mathcal{F}_t^M] \mathbb{E}[R_{t+1}|\mathcal{F}_{t-1}^M]$ to minimize concerns with Assumption 3
 - Show that $\overline{i} = \widetilde{R}_t \overline{R}_t$ does not contain any bias
 - Perform some adjustments to the portfolio sorting exercise
- Good luck!