

Kai Li and Chi-Yang Tsou

Discussant: Andrei S. Gonçalves

MFA 2020

The Paper in a Nutshell

My Comments

Final Remarks

Outline

The Paper in a Nutshell

My Comments

Durable Asset = Hard to Finance

• Non-durable Asset:
$$V_{nd} = \frac{CF_1}{(1+dr)} + \frac{CF_2}{(1+dr)^2} + \frac{CF_3}{(1+dr)^3} \dots$$

$$= \frac{K_{nd} + m}{(1+dr)} + \frac{0}{(1+dr)^2} + \frac{0}{(1+dr)^3} \dots$$

• Durable Asset:

$$V_{d} = \frac{CF_{1}}{(1+dr)} + \frac{CF_{2}}{(1+dr)^{2}} + \frac{CF_{3}}{(1+dr)^{3}} \dots$$
$$= \frac{K_{d} \times \pi}{(1+dr)} + \frac{K_{d} \times \pi}{(1+dr)^{2}} + \frac{0}{(1+dr)^{3}} \dots$$
$$\frac{V_{d}}{K_{d}} = \pi \times \left[\frac{1}{(1+dr)} + \frac{1}{(1+dr)^{2}}\right]$$

Durable Asset = Hard to Finance

• Non-durable Asset:
$$V_{nd} = \frac{CF_1}{(1+dr)} + \frac{CF_2}{(1+dr)^2} + \frac{CF_3}{(1+dr)^3} \dots$$

$$= \frac{K_{nd} \times \pi}{(1+dr)} + \frac{0}{(1+dr)^2} + \frac{0}{(1+dr)^3} \dots$$

• Durable Asset:

$$V_{d} = \frac{CF_{1}}{(1+dr)} + \frac{CF_{2}}{(1+dr)^{2}} + \frac{CF_{3}}{(1+dr)^{3}} \dots$$
$$= \frac{K_{d} \times \pi}{(1+dr)} + \frac{K_{d} \times \pi}{(1+dr)^{2}} + \frac{0}{(1+dr)^{3}} \dots$$
$$\frac{K_{d}}{K_{d}} = \pi \times \left[\frac{1}{(1+dr)} + \frac{1}{(1+dr)^{3}}\right]$$

$\mathsf{Durable}\ \mathsf{Asset}=\mathsf{Hard}\ \mathsf{to}\ \mathsf{Finance}$

• Non-durable Asset:
$$V_{nd} = \frac{CF_1}{(1+dr)} + \frac{CF_2}{(1+dr)^2} + \frac{CF_3}{(1+dr)^3} \dots$$

 $= \frac{K_{nd} \times \pi}{(1+dr)} + \frac{0}{(1+dr)^2} + \frac{0}{(1+dr)^3} \dots$
 \downarrow
 $\frac{V_{nd}}{K_{nd}} = \pi \times \frac{1}{(1+dr)}$

• Durable Asset:

$$V_{d} = \frac{CF_{1}}{(1+dr)} + \frac{CF_{2}}{(1+dr)^{2}} + \frac{CF_{3}}{(1+dr)^{3}} \dots$$

= $\frac{K_{d} \times \pi}{(1+dr)} + \frac{K_{d} \times \pi}{(1+dr)^{2}} + \frac{0}{(1+dr)^{3}} \dots$
 \Downarrow
 $\frac{V_{d}}{K_{d}} = \pi \times \left[\frac{1}{(1+dr)} + \frac{1}{(1+dr)^{2}}\right]$

• Durable Assets = Hard to Finance (they are "expensive")

- Financially constrained firms prefer "cheaper" capital
- During recession, firms become more financially constrained
- During recession, V_d falls relative to V_{nd}
- V_d is riskier than $V_{nd} \implies$ Asset Durability Premium

- Durable Assets = Hard to Finance (they are "expensive")
- Financially constrained firms prefer "cheaper" capital
- During recession, firms become more financially constrained
- During recession, V_d falls relative to V_{nd}
- V_d is riskier than $V_{nd} \implies$ Asset Durability Premium

- Durable Assets = Hard to Finance (they are "expensive")
- Financially constrained firms prefer "cheaper" capital
- During recession, firms become more financially constrained

- During recession, V_d falls relative to V_{nd}
- V_d is riskier than $V_{nd} \implies$ Asset Durability Premium

- Durable Assets = Hard to Finance (they are "expensive")
- Financially constrained firms prefer "cheaper" capital
- During recession, firms become more financially constrained

• During recession, V_d falls relative to V_{nd}

• V_d is riskier than $V_{nd} \implies$ Asset Durability Premium

- Durable Assets = Hard to Finance (they are "expensive")
- Financially constrained firms prefer "cheaper" capital
- During recession, firms become more financially constrained

- During recession, V_d falls relative to V_{nd}
- V_d is riskier than $V_{nd} \implies$ Asset Durability Premium

L 2	3	4	Н	H-L
-----	---	---	---	-----

	\mathbf{L}	2	3	4	Η	H-L
			\mathbf{D}	[V		
$ \begin{array}{c} E[R]-R_{f} (\%) \\ [t] \end{array} $	$5.39 \\ 1.48$	$9.57 \\ 2.81$	$9.34 \\ 2.81$	$9.03 \\ 2.92$	$12.32 \\ 3.62$	6.93 2.86

	\mathbf{L}	2	3	4	Η	H-L		
			D	[V				
$E[R]-R_f(\%)$	5.39	9.57	9.34	9.03	12.32	6.93		
[t]	1.48	2.81	2.81	2.92	3.62	2.86		
	WW Index							
$E[R]-R_f$ (%)	6.09	8.24	9.13	9.59	9.65	3.56		
[t]	2.13	2.78	3.68	3.78	3.85	2.23		

	\mathbf{L}	2	3	4	Η	H-L		
	DIV							
$E[R]$ - R_f (%)	5.39	9.57	9.34	9.03	12.32	6.93		
[t]	1.48	2.81	2.81	2.92	3.62	2.86		
	WW Index							
$E[R]-R_f$ (%)	6.09	8.24	9.13	9.59	9.65	3.56		
[t]	2.13	2.78	3.68	3.78	3.85	2.23		
Panel B: Whole Sample								
$E[R]-R_f$ (%)	7.36	8.10	8.12	8.65	8.79	1.44		
[t]	2.70	3.49	3.26	4.17	3.55	1.03		

The Risk Mechanism

Table 7: Aggregate Shocks and Price Dynamics

	(1)	(2)
dy	1.51	1.02
[t]	11.71	3.89
Interaction		1.06
[t]		3.28
Observations	4,830	4,760
Asset FE	Yes	Yes
Cluster SE	Yes	Yes

 $\Delta q_{h,t} = \beta_y \; \Delta y_t + \beta_d \; Asset \; Durability_{h,t} \times \Delta y_t + \varepsilon_{h,t}$

The Risk Mechanism

	\mathbf{L}	2	3	4	н	H-L
TFP	1.16	1.29	1.63	1.58	1.78	0.62
[t]	14.95	8.88	17.82	10.30	9.06	4.25
GDP	1.33	2.01	2.10	2.08	2.54	1.21
[t]	3.76	5.79	4.49	4.72	4.60	5.59

Table 10: Cash Flow Sensitivity

Table 7: Aggregate Shocks and Price Dynamics

$\Delta q_{h,t} = \beta_y \ \Delta y_t + \beta_d \ Asset \ Durability_{h,t} \times \Delta y_t + \varepsilon_h$
--

	(1)	(2)
dy [t] Interaction [t]	1.51 11.71	1.02 3.89 1.06 3.28
Observations Asset FE Cluster SE	4,830 Yes Yes	4,760 Yes Yes

The Risk Mechanism

	\mathbf{L}	2	3	4	н	H-L
TFP	1.16	1.29	1.63	1.58	1.78	0.62
[t]	14.95	8.88	17.82	10.30	9.06	4.25
GDP	1.33	2.01	2.10	2.08	2.54	1.21
[t]	3.76	5.79	4.49	4.72	4.60	5.59

Table 10: Cash Flow Sensitivity

Table 7: Aggregate Shocks and Price Dynamics

$\Delta q_{h,t}$	$=\beta_y$	Δy_t	$+\beta_d$	Asset	Dura	$bility_{h,t}$	×Ζ	$\Delta y_t +$	$\varepsilon_{h,t}$
------------------	------------	--------------	------------	-------	------	----------------	----	----------------	---------------------

	(1)	(2)
dy [t] Interaction [t]	1.51 11.71	$ \begin{array}{r} 1.02 \\ 3.89 \\ \overline{1.06} \\ 3.28 \end{array} $
Observations Asset FE Cluster SE	4,830 Yes Yes	4,760 Yes Yes

Table 11: Estimating the Market Price of Risk

Panel A: Portfolio Risk Exposures									
	\mathbf{L}	2	3	4	н	H-L			
TFP	0.36	1.92	1.37	1.48	2.33	1.89			
[t]	0.75	1.93	1.34	1.73	2.16	2.15			
GDP	-0.09	2.97	1.63	1.48	3.32	3.37			
[t]	-0.03	0.83	0.51	0.37	0.75	1.85			

• A representative household solves:

$$U_{t} = \max_{\{C_{t}, B_{i,t}\}} \left\{ (1-\beta) \cdot C_{t}^{1-1/\psi} + \beta \cdot \left(\mathbb{E}_{t} \left[U_{t+1}^{1-\gamma} \right] \right)^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

s.t.

$$C_t + \int B_{i,t} di = W_t \cdot L_t + R_{f,t} \cdot \int B_{i,t-1} di + \int \prod_{i,t} di$$

Entrepreneur i solves:

• A representative household solves:

$$U_{t} = \max_{\{C_{t}, B_{j,t}\}} \left\{ (1-\beta) \cdot C_{t}^{1-1/\psi} + \beta \cdot \left(\mathbb{E}_{t} \left[U_{t+1}^{1-\gamma} \right] \right)^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

s.t.

$$C_t + \int B_{i,t} di = W_t \cdot L_t + R_{f,t} \cdot \int B_{i,t-1} di + \int \Pi_{i,t} di$$

Entrepreneur i solves:

• A representative household solves:

$$U_{t} = \max_{\{C_{t}, B_{i,t}\}} \left\{ (1-\beta) \cdot C_{t}^{1-1/\psi} + \beta \cdot \left(\mathbb{E}_{t} \left[U_{t+1}^{1-\gamma} \right] \right)^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

s.t.

$$C_t + \int B_{i,t} di = W_t \cdot L_t + R_{f,t} \cdot \int B_{i,t-1} di + \int \Pi_{i,t} di$$

• Entrepreneur *i* solves:

$$V_{t}^{i} = \underset{\{K_{i,t+1}^{d}, K_{i,t+1}^{nd}, N_{i,t+1}, B_{i,t}\}}{\mathsf{Max}} \mathbb{E}_{t} \left[M_{t+1} \cdot \left\{ \lambda \cdot N_{i,t+1} + (1-\lambda) \cdot V_{t+1}^{i}(N_{i,t+1}) \right\} \right]$$

s.t.

 $q_{d,t} \cdot K_{i,t+1}^d + q_{nd,t} \cdot K_{i,t+1}^{nd} = N_{i,t} + B_{i,t} \qquad (with \ \delta_d < \delta_{nd})$

$$|B_{i,t}| \leq |\theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K^h_{i,t+1}|$$

• A representative household solves:

$$U_{t} = \max_{\{C_{t}, B_{i,t}\}} \left\{ (1-\beta) \cdot C_{t}^{1-1/\psi} + \beta \cdot \left(\mathbb{E}_{t} \left[U_{t+1}^{1-\gamma} \right] \right)^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

$$C_t + \int B_{i,t} di = W_t \cdot L_t + R_{f,t} \cdot \int B_{i,t-1} di + \int \Pi_{i,t} di$$

• Entrepreneur *i* solves:

$$V_{t}^{i} = \underset{\{K_{i,t+1}^{d}, K_{i,t+1}^{nd}, N_{i,t+1}, B_{i,t}\}}{\mathsf{Max}} \mathbb{E}_{t} \left[M_{t+1} \cdot \left\{ \lambda \cdot N_{i,t+1} + (1-\lambda) \cdot V_{t+1}^{i}(N_{i,t+1}) \right\} \right]$$

s.t.

$$q_{d,t} \cdot K_{i,t+1}^d + q_{nd,t} \cdot K_{i,t+1}^{nd} = N_{i,t} + B_{i,t}$$
 (with $\delta_d < \delta_{nd}$)

$$|B_{i,t}| \leq |\theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K^h_{i,t+1}|$$

• A representative household solves:

$$U_{t} = \max_{\{C_{t}, B_{i,t}\}} \left\{ (1-\beta) \cdot C_{t}^{1-1/\psi} + \beta \cdot \left(\mathbb{E}_{t} \left[U_{t+1}^{1-\gamma} \right] \right)^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

s.t.

$$C_t + \int B_{i,t} di = W_t \cdot L_t + R_{f,t} \cdot \int B_{i,t-1} di + \int \Pi_{i,t} di$$

• Entrepreneur *i* solves:

$$V_{t}^{i} = \underset{\{K_{i,t+1}^{d}, K_{i,t+1}^{nd}, N_{i,t+1}, B_{i,t}\}}{\mathsf{Max}} \mathbb{E}_{t} \left[M_{t+1} \cdot \left\{ \lambda \cdot N_{i,t+1} + (1-\lambda) \cdot V_{t+1}^{i}(N_{i,t+1}) \right\} \right]$$

s.t.

$$\begin{aligned} q_{d,t} \cdot K_{i,t+1}^{d} + q_{nd,t} \cdot K_{i,t+1}^{nd} &= N_{i,t} + B_{i,t} \qquad (\text{with } \delta_d < \delta_{nd}) \\ B_{i,t} &\leq \theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K_{i,t+1}^h \end{aligned}$$

 Table 6: Asset Durability Spread, Data, and Model Comparison

Variables	\mathbf{L}	2	3	4	н	H-L	
	Panel A: Data						
Asset Durability	7.69	9.99	11.45	14.24	18.00		
Depreciation	0.19	0.16	0.15	0.13	0.11		
Book Lev.	0.13	0.19	0.21	0.28	0.32		
ROE	0.12	0.17	0.18	0.22	0.23		
$E[R]$ - R_f (%)	5.39	9.57	9.34	9.03	12.32	6.93	
	Panel B: Model						
Asset Durability	8.33	10.05	11.12	14.28	20.08		
Depreciation	0.12	0.10	0.09	0.07	0.05		
Book Lev.	0.19	0.27	0.33	0.39	0.45		
ROE	0.06	0.08	0.09	0.11	0.13		
$E[R]$ - R_f (%)	3.39	5.27	5.96	6.60	7.02	3.63	

 Table 6: Asset Durability Spread, Data, and Model Comparison

Variables	\mathbf{L}	2	3	4	н	H-L
	Panel A: Data					
Asset Durability	7.69	9.99	11.45	14.24	18.00	
Depreciation	0.19	0.16	0.15	0.13	0.11	
Book Lev.	0.13	0.19	0.21	0.28	0.32	
ROE	0.12	0.17	0.18	0.22	0.23	
$E[R]$ - R_f (%)	5.39	9.57	9.34	9.03	12.32	6.93
	Panel B: Model					
Asset Durability	8.33	10.05	11.12	14.28	20.08	
Depreciation	0.12	0.10	0.09	0.07	0.05	
Book Lev.	0.19	0.27	0.33	0.39	0.45	
ROE	0.06	0.08	0.09	0.11	0.13	
$E[R]$ - R_f (%)	3.39	5.27	5.96	6.60	7.02	3.63

Table 6: Asset Durability Spread, Data, and Model Comparison

Variables	\mathbf{L}	2	3	4	н	H-L
	Panel A: Data					
Asset Durability	7.69	9.99	11.45	14.24	18.00	
Depreciation	0.19	0.16	0.15	0.13	0.11	
Book Lev.	0.13	0.19	0.21	0.28	0.32	
ROE	0.12	0.17	0.18	0.22	0.23	
$E[R]$ - R_f (%)	5.39	9.57	9.34	9.03	12.32	6.93
	Panel B: Model					
Asset Durability	8.33	10.05	11.12	14.28	20.08	
Depreciation	0.12	0.10	0.09	0.07	0.05	
Book Lev.	0.19	0.27	0.33	0.39	0.45	
ROE	0.06	0.08	0.09	0.11	0.13	
$E[R]$ - R_f (%)	3.39	5.27	5.96	6.60	7.02	3.63

Table 6: Asset Durability Spread, Data, and Model Comparison

Variables	\mathbf{L}	2	3	4	н	H-L	
	Panel A: Data						
Asset Durability	7.69	9.99	11.45	14.24	18.00		
Depreciation	0.19	0.16	0.15	0.13	0.11		
Book Lev.	0.13	0.19	0.21	0.28	0.32		
ROE	0.12	0.17	0.18	0.22	0.23		
$E[R]$ - R_f (%)	5.39	9.57	9.34	9.03	12.32	6.93	
	Panel B: Model						
Asset Durability	8.33	10.05	11.12	14.28	20.08		
Depreciation	0.12	0.10	0.09	0.07	0.05		
Book Lev.	0.19	0.27	0.33	0.39	0.45		
ROE	0.06	0.08	0.09	0.11	0.13		
$E[R]$ - R_f (%)	3.39	5.27	5.96	6.60	7.02	3.63	

The Paper in a Nutshell

My Comments

Final Remarks

Outline

The Paper in a Nutshell

My Comments

• Equilibrium $q_{d,t}$ and $q_{nd,t} \Rightarrow$ Asset Durability Premium

- Equilibrium q_{d,t} and q_{nd,t} depend on constrained firms, but they should affect all firms (constrained and unconstrained)
- Empirically, the Asset Durability Premium exists only among constrained firms
- Can you add unconstrained firms to the model and show that such firms do not display the Asset Durability Premium (and explore the mechanism)?

- Equilibrium $q_{d,t}$ and $q_{nd,t} \Rightarrow$ Asset Durability Premium
- Equilibrium q_{d,t} and q_{nd,t} depend on constrained firms, but they should affect all firms (constrained and unconstrained)
- Empirically, the Asset Durability Premium exists only among constrained firms
- Can you add unconstrained firms to the model and show that such firms do not display the Asset Durability Premium (and explore the mechanism)?

- Equilibrium $q_{d,t}$ and $q_{nd,t} \Rightarrow$ Asset Durability Premium
- Equilibrium q_{d,t} and q_{nd,t} depend on constrained firms, but they should affect all firms (constrained and unconstrained)
- Empirically, the Asset Durability Premium exists only among constrained firms
- Can you add unconstrained firms to the model and show that such firms do not display the Asset Durability Premium (and explore the mechanism)?

- Equilibrium $q_{d,t}$ and $q_{nd,t} \Rightarrow$ Asset Durability Premium
- Equilibrium q_{d,t} and q_{nd,t} depend on constrained firms, but they should affect all firms (constrained and unconstrained)
- Empirically, the Asset Durability Premium exists only among constrained firms
- Can you add unconstrained firms to the model and show that such firms do not display the Asset Durability Premium (and explore the mechanism)?

- $B_{i,t} \leq \theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K_{i,t+1}^h$
- θ should be higher for durable assets
- It matters: Ai et al. (2019) indicates higher collateralizability lowers the riskiness of assets
- Page 6 states "...we also consider a variation of the model with Rampini (2019) type of collateral constraint", but I could not identify the results related to this analysis
- I suggest jointly studying durability and collateralizability in a model with (δ_d, θ_d) and $(\delta_{nd}, \theta_{nd})$ firms
- You can compare double sorts in the data (likely to show stronger durability premium) with double sorts in the model

•
$$B_{i,t} \leq \theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K_{i,t+1}^h$$

- heta should be higher for durable assets
- It matters: Ai et al. (2019) indicates higher collateralizability lowers the riskiness of assets
- Page 6 states "...we also consider a variation of the model with Rampini (2019) type of collateral constraint", but I could not identify the results related to this analysis
- I suggest jointly studying durability and collateralizability in a model with (δ_d, θ_d) and $(\delta_{nd}, \theta_{nd})$ firms
- You can compare double sorts in the data (likely to show stronger durability premium) with double sorts in the model

•
$$B_{i,t} \leq \theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K_{i,t+1}^h$$

- θ should be higher for durable assets
- It matters: Ai et al. (2019) indicates higher collateralizability lowers the riskiness of assets
- Page 6 states "...we also consider a variation of the model with Rampini (2019) type of collateral constraint", but I could not identify the results related to this analysis
- I suggest jointly studying durability and collateralizability in a model with (δ_d, θ_d) and $(\delta_{nd}, \theta_{nd})$ firms
- You can compare double sorts in the data (likely to show stronger durability premium) with double sorts in the model

•
$$B_{i,t} \leq \theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K_{i,t+1}^h$$

- θ should be higher for durable assets
- It matters: Ai et al. (2019) indicates higher collateralizability lowers the riskiness of assets
- Page 6 states "...we also consider a variation of the model with Rampini (2019) type of collateral constraint", but I could not identify the results related to this analysis
- I suggest jointly studying durability and collateralizability in a model with (δ_d, θ_d) and $(\delta_{nd}, \theta_{nd})$ firms
- You can compare double sorts in the data (likely to show stronger durability premium) with double sorts in the model

•
$$B_{i,t} \leq \theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K_{i,t+1}^h$$

- θ should be higher for durable assets
- It matters: Ai et al. (2019) indicates higher collateralizability lowers the riskiness of assets
- Page 6 states "...we also consider a variation of the model with Rampini (2019) type of collateral constraint", but I could not identify the results related to this analysis
- I suggest jointly studying durability and collateralizability in a model with (δ_d, θ_d) and $(\delta_{nd}, \theta_{nd})$ firms
- You can compare double sorts in the data (likely to show stronger durability premium) with double sorts in the model

•
$$B_{i,t} \leq \theta \cdot \sum_{h \in \{d,nd\}} q_{h,t} \cdot K_{i,t+1}^h$$

- θ should be higher for durable assets
- It matters: Ai et al. (2019) indicates higher collateralizability lowers the riskiness of assets
- Page 6 states "...we also consider a variation of the model with Rampini (2019) type of collateral constraint", but I could not identify the results related to this analysis
- I suggest jointly studying durability and collateralizability in a model with (δ_d, θ_d) and $(\delta_{nd}, \theta_{nd})$ firms
- You can compare double sorts in the data (likely to show stronger durability premium) with double sorts in the model

- The durability premium arises because of high q_{d,t}, which makes durable capital "expensive", and thus hard to finance
- Does that imply the model generates a Growth Premium (as opposed to a Value Premium)?
- It is not clear because "durable firms" are quite profitable (and thus have short equity duration) in the model
- I suggest you explore this issue explicitly in the paper
- Jointly studying the durability and collateralizability premia may also shed light on this matter

- The durability premium arises because of high $q_{d,t}$, which makes durable capital "expensive", and thus hard to finance
- Does that imply the model generates a Growth Premium (as opposed to a Value Premium)?
- It is not clear because "durable firms" are quite profitable (and thus have short equity duration) in the model
- I suggest you explore this issue explicitly in the paper
- Jointly studying the durability and collateralizability premia may also shed light on this matter

- The durability premium arises because of high $q_{d,t}$, which makes durable capital "expensive", and thus hard to finance
- Does that imply the model generates a Growth Premium (as opposed to a Value Premium)?
- It is not clear because "durable firms" are quite profitable (and thus have short equity duration) in the model
- I suggest you explore this issue explicitly in the paper
- Jointly studying the durability and collateralizability premia may also shed light on this matter

- The durability premium arises because of high q_{d,t}, which makes durable capital "expensive", and thus hard to finance
- Does that imply the model generates a Growth Premium (as opposed to a Value Premium)?
- It is not clear because "durable firms" are quite profitable (and thus have short equity duration) in the model
- I suggest you explore this issue explicitly in the paper
- Jointly studying the durability and collateralizability premia may also shed light on this matter

- The durability premium arises because of high q_{d,t}, which makes durable capital "expensive", and thus hard to finance
- Does that imply the model generates a Growth Premium (as opposed to a Value Premium)?
- It is not clear because "durable firms" are quite profitable (and thus have short equity duration) in the model
- I suggest you explore this issue explicitly in the paper
- Jointly studying the durability and collateralizability premia may also shed light on this matter

$$\underbrace{\tau_{d,t} - \tau_{nd,t}}_{\text{User cost Difference}} = \underbrace{\left(\vartheta_{d,t} - \vartheta_{nd,t}\right)}_{\text{Rampini (2019)}} + \Delta_{rp,t} + \dots$$

- "...according to the first component durable capital is costly because it requires more down payment"
- "... according to the second component, durable capital requires higher risk premium"
- But, with $dr_d > dr_{nd}$, the cost difference should be attenuated:

• How can $dr_d > dr_{nd}$ increase the user cost difference?

$$\underbrace{\tau_{d,t} - \tau_{nd,t}}_{\text{User cost Difference}} = \underbrace{\left(\vartheta_{d,t} - \vartheta_{nd,t}\right)}_{\text{Rampini (2019)}} + \Delta_{rp,t} + \dots$$

- "...according to the first component durable capital is costly because it requires more down payment"
- "... according to the second component, durable capital requires higher risk premium"
- But, with $dr_d > dr_{nd}$, the cost difference should be attenuated:

• How can $dr_d > dr_{nd}$ increase the user cost difference?

$$\underbrace{\tau_{d,t} - \tau_{nd,t}}_{\text{User cost Difference}} = \underbrace{\left(\vartheta_{d,t} - \vartheta_{nd,t}\right)}_{\text{Rampini (2019)}} + \Delta_{rp,t} + \dots$$

- "...according to the first component durable capital is costly because it requires more down payment"
- "... according to the second component, durable capital requires higher risk premium"
- But, with $dr_d > dr_{nd}$, the cost difference should be attenuated:

• How can $dr_d > dr_{nd}$ increase the user cost difference?

$$\underbrace{\tau_{d,t} - \tau_{nd,t}}_{\text{User cost Difference}} = \underbrace{\left(\vartheta_{d,t} - \vartheta_{nd,t}\right)}_{\text{Rampini (2019)}} + \Delta_{rp,t} + \dots$$

- "...according to the first component durable capital is costly because it requires more down payment"
- "... according to the second component, durable capital requires higher risk premium"
- But, with $dr_d > dr_{nd}$, the cost difference should be attenuated:

$$\frac{V_{nd}}{K_{nd}} = \pi \times \frac{1}{(1+dr_{nd})} \qquad \qquad \frac{V_d}{K_d} = \pi \times \left[\frac{1}{(1+dr_d)} + \frac{1}{(1+dr_d)^2}\right]$$

• How can dr_d > dr_{nd} increase the user cost difference?

$$\underbrace{\tau_{d,t} - \tau_{nd,t}}_{\text{User cost Difference}} = \underbrace{\left(\vartheta_{d,t} - \vartheta_{nd,t}\right)}_{\text{Rampini (2019)}} + \Delta_{rp,t} + \dots$$

- "...according to the first component durable capital is costly because it requires more down payment"
- "... according to the second component, durable capital requires higher risk premium"
- But, with $dr_d > dr_{nd}$, the cost difference should be attenuated:

$$\frac{V_{nd}}{K_{nd}} = \pi \times \frac{1}{(1+dr_{nd})} \qquad \qquad \frac{V_d}{K_d} = \pi \times \left[\frac{1}{(1+dr_d)} + \frac{1}{(1+dr_d)^2}\right]$$

How can dr_d > dr_{nd} increase the user cost difference?

1. I would present all empirical evidence upfront

2. Do we have $\int \prod_{i,t} di = \lambda \cdot N_{t+1}$?

3. In Ai et al. (2019), you have household and firms. Why entrepreneurs (instead of firms) here?

4. Typo in Equation (15)? $C_t + I_t + G(I_t, K_t^d + K_t^{nd}) = Y_t$

- Why focus on asset durability relative to industry? The argument should also hold across industries...
- 6. Might be too much, but I think θ_t would make the Asset Durability Premium stronger in the model

- 1. I would present all empirical evidence upfront
- 2. Do we have $\int \prod_{i,t} di = \lambda \cdot N_{t+1}$?
- 3. In Ai et al. (2019), you have household and firms. Why entrepreneurs (instead of firms) here?
- 4. Typo in Equation (15)? $C_t + l_t + G(l_t, K^d_t + K^{nd}_t) = Y_t$
- 5. Why focus on asset durability relative to industry? The argument should also hold across industries...
- 6. Might be too much, but I think θ_t would make the Asset Durability Premium stronger in the model

- 1. I would present all empirical evidence upfront
- 2. Do we have $\int \prod_{i,t} di = \lambda \cdot N_{t+1}$?
- 3. In Ai et al. (2019), you have household and firms. Why entrepreneurs (instead of firms) here?
- 4. Typo in Equation (15)? $C_t + I_t + G(I_t, K_t^d + K_t^{nd}) = Y_t$
- Why focus on asset durability relative to industry? The argument should also hold across industries...
- 6. Might be too much, but I think θ_t would make the Asset Durability Premium stronger in the model

- 1. I would present all empirical evidence upfront
- 2. Do we have $\int \prod_{i,t} di = \lambda \cdot N_{t+1}$?
- 3. In Ai et al. (2019), you have household and firms. Why entrepreneurs (instead of firms) here?
- 4. Typo in Equation (15)? $C_t + I_t + G(I_t, K_t^d + K_t^{nd}) = Y_t$
- Why focus on asset durability relative to industry? The argument should also hold across industries...
- 6. Might be too much, but I think θ_t would make the Asset Durability Premium stronger in the model

- 1. I would present all empirical evidence upfront
- 2. Do we have $\int \prod_{i,t} di = \lambda \cdot N_{t+1}$?
- 3. In Ai et al. (2019), you have household and firms. Why entrepreneurs (instead of firms) here?
- 4. Typo in Equation (15)? $C_t + I_t + G(I_t, K_t^d + K_t^{nd}) = Y_t$
- 5. Why focus on asset durability relative to industry? The argument should also hold across industries...
- 6. Might be too much, but I think θ_t would make the Asset Durability Premium stronger in the model

- 1. I would present all empirical evidence upfront
- 2. Do we have $\int \prod_{i,t} di = \lambda \cdot N_{t+1}$?
- 3. In Ai et al. (2019), you have household and firms. Why entrepreneurs (instead of firms) here?
- 4. Typo in Equation (15)? $C_t + I_t + G(I_t, K_t^d + K_t^{nd}) = Y_t$
- 5. Why focus on asset durability relative to industry? The argument should also hold across industries...
- 6. Might be too much, but I think θ_t would make the Asset Durability Premium stronger in the model

The Paper in a Nutshell

My Comments

Final Remarks

Outline

The Paper in a Nutshell

My Comments

• The paper is quite interesting and makes an important point:

Asset durability matters for Asset Pricing!

- I expect it to publish well
- It would be useful to:

• The paper is quite interesting and makes an important point:

Asset durability matters for Asset Pricing!

- I expect it to publish well
- It would be useful to:

- The paper is quite interesting and makes an important point: Asset durability matters for Asset Pricing!
- I expect it to publish well
- It would be useful to:
 - Explore the model implications for unconstrained firms
 - Jointly study the durability and collateralizability premia
 - Explore whether the model produces a growth premium
 - Better explain how the risk premium channel exacerbates the user cost difference between durable and non-durable capital
- Good luck!

• The paper is quite interesting and makes an important point:

Asset durability matters for Asset Pricing!

- I expect it to publish well
- It would be useful to:
 - Explore the model implications for unconstrained firms
 - Jointly study the durability and collateralizability premia
 - Explore whether the model produces a growth premium
 - Better explain how the risk premium channel exacerbates the user cost difference between durable and non-durable capital
- Good luck!

- The paper is quite interesting and makes an important point: Asset durability matters for Asset Pricing!
- I expect it to publish well
- It would be useful to:
 - Explore the model implications for unconstrained firms
 - Jointly study the durability and collateralizability premia
 - Explore whether the model produces a growth premium
 - Better explain how the risk premium channel exacerbates the user cost difference between durable and non-durable capital
- Good luck!

- The paper is quite interesting and makes an important point: Asset durability matters for Asset Pricing!
- I expect it to publish well
- It would be useful to:
 - Explore the model implications for unconstrained firms
 - Jointly study the durability and collateralizability premia
 - Explore whether the model produces a growth premium
 - Better explain how the risk premium channel exacerbates the user cost difference between durable and non-durable capital

- The paper is quite interesting and makes an important point: Asset durability matters for Asset Pricing!
- I expect it to publish well
- It would be useful to:
 - Explore the model implications for unconstrained firms
 - Jointly study the durability and collateralizability premia
 - Explore whether the model produces a growth premium
 - Better explain how the risk premium channel exacerbates the user cost difference between durable and non-durable capital

- The paper is quite interesting and makes an important point: Asset durability matters for Asset Pricing!
- I expect it to publish well
- It would be useful to:
 - Explore the model implications for unconstrained firms
 - Jointly study the durability and collateralizability premia
 - Explore whether the model produces a growth premium
 - Better explain how the risk premium channel exacerbates the user cost difference between durable and non-durable capital
- Good luck!