

Model Selection with Transaction Costs

Andrew Detzel, Robert Novy-Marx, and Mihail Velikov

Discussant: Andrei S. Gonçalves

MFA 2020

Outline

The Paper in a Nutshell

My Comments

• The GRS test:

$$SR^{2}(R, f) - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$

• If R includes all assets, then $SR^2(R,f)=SR_{max}^2$ and

- The highest $SR^2(f)$ provides the lowest GRS statistic
- Barillas and Shanken (2017, RFS)'s Insight: To compare models, we just need to compare $SR^2(f)$
- This paper's insight: Trading costs matter a lot when comparing $SR^2(f)$

• The GRS test:

$$SR^{2}(R, f) - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$

• If R includes <u>all</u> assets, then $SR^2(R, f) = SR_{max}^2$ and

$$SR_{max}^{2} - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$

- The highest $SR^2(f)$ provides the lowest GRS statistic
- Barillas and Shanken (2017, RFS)'s Insight: To compare models, we just need to compare $SR^2(f)$
- This paper's insight: Trading costs matter a lot when comparing $SR^2(f)$

• The GRS test:

$$SR^{2}(R, f) - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$

• If R includes <u>all</u> assets, then $SR^2(R, f) = SR_{max}^2$ and

$$SR_{max}^{2} - SR^{2}(f) = \alpha^{'} \Sigma^{-1} \alpha$$

- The highest $SR^2(f)$ provides the lowest GRS statistic
- Barillas and Shanken (2017, RFS)'s Insight:
 To compare models, we just need to compare SR²(f
- This paper's insight:

Trading costs matter a lot when comparing $SR^2(f)$

• The GRS test:

$$SR^{2}(R, f) - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$

• If R includes <u>all</u> assets, then $SR^2(R, f) = SR_{max}^2$ and

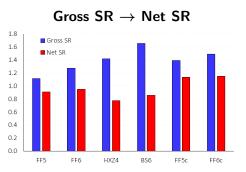
$$SR_{max}^{2} - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$

- The highest $SR^2(f)$ provides the lowest GRS statistic
- Barillas and Shanken (2017, RFS)'s Insight:
 To compare models, we just need to compare SR²(f)
- This paper's insight

Trading costs matter a lot when comparing $SR^2(f)$

• The GRS test:

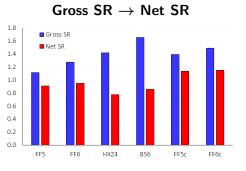
$$SR^{2}(R, f) - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$


• If R includes <u>all</u> assets, then $SR^2(R, f) = SR_{max}^2$ and

$$SR_{max}^{2} - SR^{2}(f) = \alpha' \Sigma^{-1} \alpha$$

- The highest $SR^2(f)$ provides the lowest GRS statistic
- Barillas and Shanken (2017, RFS)'s Insight:
 To compare models, we just need to compare SR²(f)
- This paper's insight:

Trading costs matter a lot when comparing $SR^2(f)$


Core Results: Original Factors

Core Results: Original Factors

FF5

FF6

IS Net SR → OS Net SR 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

HXZ4

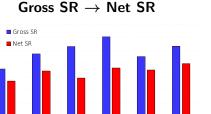
BS6

FF5c

FF6c

1.8

1.6

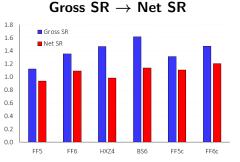

1.4 1.2 1.0 0.8 0.6 0.4 0.2

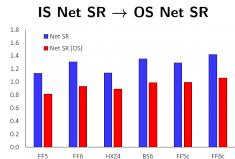
FF5

FF6

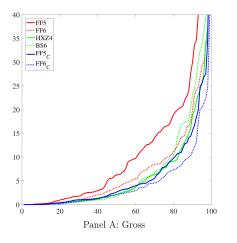
HXZ4

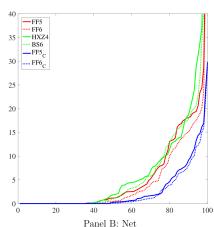
Core Results: Cost-mitigated Factors



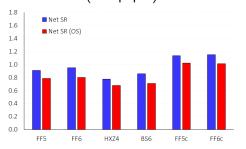

BS6

FF5c


FF6c


Core Results: Cost-mitigated Factors

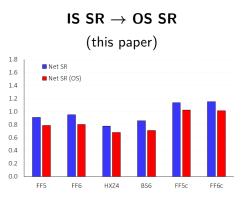
Distribution of $\%\Delta SR(M, A) = SR^2(M, A)/SR^2(M) - 1$

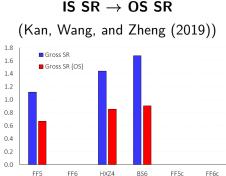

Outline

The Paper in a Nutshell

My Comments

1) Use Kan, Wang, and Zheng (2019) OS Procedure

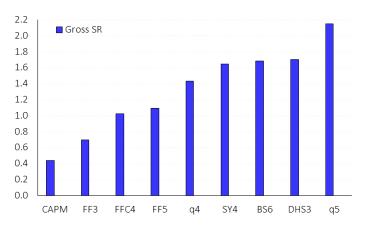

IS $SR \rightarrow OS SR$ (this paper)

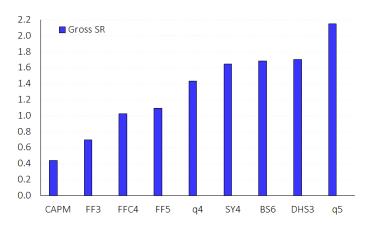


1) Use Kan, Wang, and Zheng (2019) OS Procedure

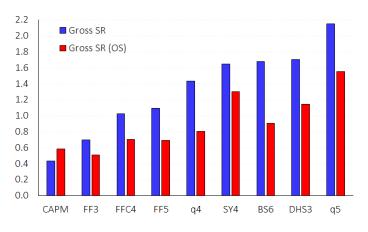
FF5

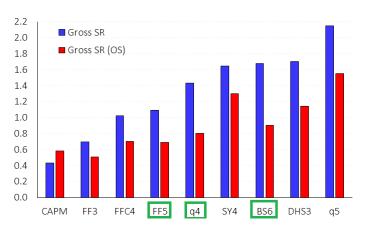
FF6

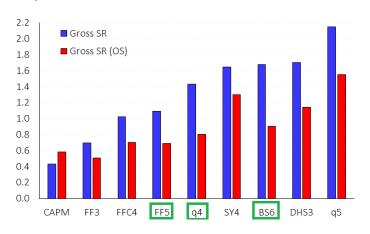



BS6

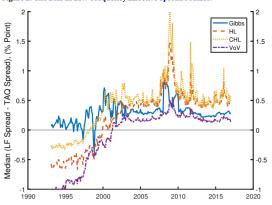
FF5c


FF6c


The factors are sorted by publication year

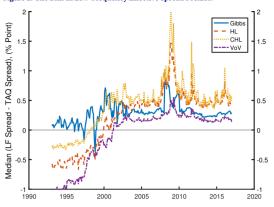

• The factors are sorted by publication year

• The factors are sorted by publication year


- The factors are sorted by publication year
- Add other factor models & discuss issues with the max SR tes

- The factors are sorted by publication year
- Add other factor models & discuss issues with the max SR test

3) Use Chen and Velikov (2020) Trading Cost Measure



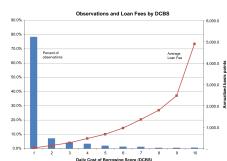
Chen and Velikov (2020): "...the LF trading costs used by Novy-Marx and Velikov (2016) overestimate expected costs going forward."

3) Use Chen and Velikov (2020) Trading Cost Measure

Figure 2: The Bias in Low-Frequency Effective Spread Proxies.



 Chen and Velikov (2020): "...the LF trading costs used by Novy-Marx and Velikov (2016) overestimate expected costs going forward."


Andrews, Lundblad, and Reed (2019)

Andrews, Lundblad, and Reed (2019)

Beneish, Lee, and Nichols (2015)

Cumulative Performance (Loan Fee vs GHZ 102 Anomalies)

- Engelberg, Evans, Leonard, Reed, and Ringgenberg (2020).
 - "...the long-short [net of fees] return for the loan fee anomaly is 0.45% per month compared to -0.01% for the average GHZ anomaly"

Cumulative Performance (Loan Fee vs GHZ 102 Anomalies)

1-Year Average Return (Loan Fee vs GHZ 102 Anomalies)

- Engelberg, Evans, Leonard, Reed, and Ringgenberg (2020):
 - "...the long-short [net of fees] return for the loan fee anomaly is 0.45% per month compared to -0.01% for the average GHZ anomaly"

Cumulative Performance (Loan Fee vs GHZ 102 Anomalies)

1-Year Average Return (Loan Fee vs GHZ 102 Anomalies)

Engelberg, Evans, Leonard, Reed, and Ringgenberg (2020):

"...the long-short [net of fees] return for the loan fee anomaly is 0.45% per month compared to -0.01% for the average GHZ anomaly"

Other (less important) Comments/Questions

1. Can you add an analysis with Cost-mitigated Factors + Cost Diversification?

2. Why report SR^2 instead of SR?

3. How do you deal with negative factor positions in simulations?

Outline

The Paper in a Nutshell

My Comments

Final Remarks

• The paper is simple and makes a very important point:

Trading costs matter a lot when comparing factor models!

- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to

- The paper is simple and makes a very important point:
 Trading costs matter a lot when comparing factor models!
- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to:

- The paper is simple and makes a very important point:
 Trading costs matter a lot when comparing factor models!
- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to:
 - Follow Kan, Wang, and Zheng (2019) in the OS tests
 - Add other factor models to the tests
 - Use Chen and Velikov (2020) trading cost measure
 - Shed light on the importance of short selling costs
- Good luck!

- The paper is simple and makes a very important point:
 Trading costs matter a lot when comparing factor models!
- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to:
 - Follow Kan, Wang, and Zheng (2019) in the OS tests
 - Add other factor models to the tests
 - Use Chen and Velikov (2020) trading cost measure
 - Shed light on the importance of short selling costs
- Good luck!

- The paper is simple and makes a very important point:
 Trading costs matter a lot when comparing factor models!
- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to:
 - Follow Kan, Wang, and Zheng (2019) in the OS tests
 - Add other factor models to the tests
 - Use Chen and Velikov (2020) trading cost measure
 - Shed light on the importance of short selling costs
- Good luck!

- The paper is simple and makes a very important point:
 Trading costs matter a lot when comparing factor models!
- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to:
 - Follow Kan, Wang, and Zheng (2019) in the OS tests
 - Add other factor models to the tests
 - Use Chen and Velikov (2020) trading cost measure
 - Shed light on the importance of short selling costs
- Good luck!

- The paper is simple and makes a very important point:
 Trading costs matter a lot when comparing factor models!
- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to:
 - Follow Kan, Wang, and Zheng (2019) in the OS tests
 - Add other factor models to the tests
 - Use Chen and Velikov (2020) trading cost measure
 - Shed light on the importance of short selling costs
- Good luck!

- The paper is simple and makes a very important point:
 Trading costs matter a lot when comparing factor models!
- Perhaps even more important these days given the proliferation of factor models...
- It would be useful to:
 - Follow Kan, Wang, and Zheng (2019) in the OS tests
 - Add other factor models to the tests
 - Use Chen and Velikov (2020) trading cost measure
 - Shed light on the importance of short selling costs
- Good luck!