Equity Duration and Predictability

Benjamin Golez and Peter Koudijs

Discussant: Andrei S. Gonçalves

EFA 2020

Outline

The Paper in a Nutshell

My Comments

Final Remarks
\uparrow Dividend Maturity $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ

- 1-Year Dividend Strip:

$$
P^{(1)}=D_{1} \cdot e^{-\mu_{1}}
$$

- 2-Year Dividend Strip:

$$
P^{(2)}=D_{2} \cdot e^{-\left(\mu_{1}+\mu_{2}\right)}
$$

- 1-Year Dividend Strip:

$$
\begin{aligned}
P^{(1)} & =D_{1} \cdot e^{-\mu_{1}} \\
& =D \cdot e^{g_{1}-\mu_{1}}
\end{aligned}
$$

- 2-Year Dividend Strip:

$$
\begin{aligned}
P^{(2)} & =D_{2} \cdot e^{-\left(\mu_{1}+\mu_{2}\right)} \\
& =D \cdot e^{\left(g_{1}+g_{2}\right)-\left(\mu_{1}+\mu_{2}\right)}
\end{aligned}
$$

\uparrow Dividend Maturity $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ

- 1-Year Dividend Strip:

$$
\begin{aligned}
P^{(1)} & =D_{1} \cdot e^{-\mu_{1}} \\
& =D \cdot e^{g_{1}-\mu_{1}} \\
& \Downarrow \\
d p^{(1)} & =\mu_{1}-g_{1}
\end{aligned}
$$

- 2-Year Dividend Strip:

$$
\begin{aligned}
P^{(2)} & =D_{2} \cdot e^{-\left(\mu_{1}+\mu_{2}\right)} \\
& =D \cdot e^{\left(g_{1}+g_{2}\right)-\left(\mu_{1}+\mu_{2}\right)} \\
& \Downarrow \\
d p^{(2)} & =\left(\mu_{1}+\mu_{2}\right)-\left(g_{1}+g_{2}\right)
\end{aligned}
$$

\uparrow Equity Duration $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ
\uparrow Equity Duration $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ

- $\operatorname{AR}(1)$ processes for μ and g (ignoring constants):

$$
\begin{aligned}
\mu_{t+1} & =\delta_{\mu} \cdot \mu_{t}+\epsilon_{t+1}^{\mu} \\
g_{t+1} & =\delta_{g} \cdot g_{t}+\epsilon_{t+1}^{g}
\end{aligned}
$$

\uparrow Equity Duration $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ

- $\mathrm{AR}(1)$ processes for μ and g (ignoring constants):

$$
\begin{aligned}
\mu_{t+1} & =\delta_{\mu} \cdot \mu_{t}+\epsilon_{t+1}^{\mu} \\
g_{t+1} & =\delta_{g} \cdot g_{t}+\epsilon_{t+1}^{g}
\end{aligned}
$$

- Then, the dividend price ratio is (ignoring constants):

$$
d p_{t}=\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}\right]-\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j}\right]
$$

\uparrow Equity Duration $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ

- $\operatorname{AR}(1)$ processes for μ and g (ignoring constants):

$$
\begin{aligned}
\mu_{t+1} & =\delta_{\mu} \cdot \mu_{t}+\epsilon_{t+1}^{\mu} \\
g_{t+1} & =\delta_{g} \cdot g_{t}+\epsilon_{t+1}^{g}
\end{aligned}
$$

- Then, the dividend price ratio is (ignoring constants):

$$
\begin{aligned}
d p_{t} & =\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}\right]-\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j}\right] \\
& =\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
\end{aligned}
$$

\uparrow Equity Duration $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ

- $\mathrm{AR}(1)$ processes for μ and g (ignoring constants):

$$
\begin{aligned}
\mu_{t+1} & =\delta_{\mu} \cdot \mu_{t}+\epsilon_{t+1}^{\mu} \\
g_{t+1} & =\delta_{g} \cdot g_{t}+\epsilon_{t+1}^{g}
\end{aligned}
$$

- Then, the dividend price ratio is (ignoring constants):

$$
\begin{aligned}
d p_{t} & =\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}\right]-\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j}\right] \\
& =\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
\end{aligned}
$$

- If $\rho=0$, persistence does not matter
- If $\rho=1$, persistence matters a lot

\uparrow Equity Duration $\Rightarrow \uparrow \%$ of $\operatorname{Var}(d p)$ Explained by μ

- $\mathrm{AR}(1)$ processes for μ and g (ignoring constants):

$$
\begin{aligned}
\mu_{t+1} & =\delta_{\mu} \cdot \mu_{t}+\epsilon_{t+1}^{\mu} \\
g_{t+1} & =\delta_{g} \cdot g_{t}+\epsilon_{t+1}^{g}
\end{aligned}
$$

- Then, the dividend price ratio is (ignoring constants):

$$
\begin{aligned}
d p_{t} & =\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}\right]-\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j}\right] \\
& =\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
\end{aligned}
$$

- If $\rho=0$, persistence does not matter
- If $\rho=1$, persistence matters a lot
- And Gonçalves (2020a) shows that Dur $\approx 1+e^{-\overline{d p}}=\frac{1}{1-\rho}$

Decomposing Var(dp): Market vs Dividend Strips

Decomposing Var(dp): Market vs Dividend Strips

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned}
$$

Decomposing Var(dp): Market vs Dividend Strips

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Decomposing Var(dp): Market vs Dividend Strips

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Market

Dividend strips

(1)

(2)

ER (implied)	0.98	0.73
ER	0.97	0.63
EDG	0.03	0.37
EDG (implied)	0.02	0.27

Decomposing Var(dp): Market vs Dividend Strips

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Market
Dividend strips

(1)

ER (implied)
EDG
EDG (implied)
0.98
0.73
0.63
0.37
0.27

Decomposing Var(dp): Time Series Analysis

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Decomposing Var(dp): Time Series Analysis

$$
r_{t+1}=\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r}
$$

$$
\begin{aligned}
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right. \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned}
$$

1629-1945 1945-2017
(1)
(2)

ER	0.34	0.89
ER (implied)	0.37	0.89
EDG	0.63	0.11
EDG (implied)	0.66	0.11

Decomposing Var(dp): Time Series Analysis

$$
r_{t+1}=\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r}
$$

$$
\begin{aligned}
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right. \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned}
$$

$1629-1945$	$1945-2017$
(1)	(2)
0.34	0.89
0.37	0.89
0.63	0.11
0.66	0.11

Decomposing $\operatorname{Var}(d p)$: Time Series Analysis

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Total payout

Decomposing $\operatorname{Var}(d p)$: Cross-Sectional Analysis

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Decomposing Var(dp): Cross-Sectional Analysis

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Below 0.5
 Above 0.5

	(5)	(6)
ER	0.93	0.60
ER (implied)	0.88	0.55
EDG	0.12	0.45
EDG (implied)	0.07	0.40

Decomposing Var(dp): Cross-Sectional Analysis

$$
\begin{aligned}
r_{t+1} & =\beta_{r} \cdot d p_{t}+\epsilon_{t+1}^{r} \\
\Delta d_{t+1} & =\beta_{d} \cdot d p_{t}+\epsilon_{t+1}^{d} \\
d p_{t+1} & =\beta_{d p} \cdot d p_{t}+\epsilon_{t+1}^{d p}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\operatorname{Var}_{r}(d p)=\beta_{r} /\left(1-\rho \cdot \beta_{d p}\right) \\
\operatorname{Var}_{d}(d p)=\beta_{d} /\left(1-\rho \cdot \beta_{d p}\right)
\end{array}\right.
$$

Below 0.5
 Above 0.5

	(5)	(6)
ER	0.93	0.60
ER (implied)	0.88	0.55
EDG	0.12	0.45
EDG (implied)	0.07	0.40

Outline

The Paper in a Nutshell

My Comments

Final Remarks

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

- I do not think so!

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

- I do not think so!

Table 7: Simulations

Payout (\%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (\%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

- I do not think so!

Table 7: Simulations

Payout (\%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (\%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

- I do not think so!

Table 7: Simulations

Payout (\%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (\%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

- I do not think so!

Table 7: Simulations

Payout (\%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (\%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

- I do not think so!

Table 7: Simulations

Payout (\%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (\%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

- Data: DP decreases from $3.4 \%(\rho=0.97)$ to $4.9 \%(\rho=0.95)$

Is it Really about ρ ?

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

- I do not think so!

Table 7: Simulations

Payout (\%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (\%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

- Data: DP decreases from 3.4\% $(\rho=0.97)$ to $4.9 \%(\rho=0.95)$
- Data: ER increases from 34% to 89%

It is not about $\rho \ldots$ it is about $\sigma_{\mu} / \sigma_{g}$

$$
d p_{t}=\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t} \quad+\quad\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t}
$$

It is not about $\rho \ldots$ it is about $\sigma_{\mu} / \sigma_{g}$

$$
\begin{aligned}
d p_{t} & =\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t} \\
& =\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{r} \cdot d p_{t}\right)+\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{d} \cdot d p_{t}\right)
\end{aligned}
$$

It is not about $\rho \ldots$ it is about $\sigma_{\mu} / \sigma_{g}$

$$
\begin{aligned}
d p_{t} & =\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t} \\
& =\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{r} \cdot d p_{t}\right)+\quad\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{d} \cdot d p_{t}\right)
\end{aligned}
$$

- In the empirical analysis, ρ has no effect because the persistences are the same $\left(=\beta_{d p}\right)$

It is not about $\rho \ldots$ it is about $\sigma_{\mu} / \sigma_{g}$

$$
\begin{aligned}
d p_{t} & =\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t} \\
& =\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{r} \cdot d p_{t}\right)+\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{d} \cdot d p_{t}\right)
\end{aligned}
$$

- In the empirical analysis, ρ has no effect because the persistences are the same $\left(=\beta_{d p}\right)$
- The effect comes from:

$$
\operatorname{Cov}(\mu, d p)=\beta_{r} \cdot \operatorname{Var}(d p) \quad \text { vs } \quad \operatorname{Cov}(g, d p)=\beta_{d} \cdot \operatorname{Var}(d p)
$$

It is not about $\rho \ldots$ it is about $\sigma_{\mu} / \sigma_{g}$

$$
\begin{aligned}
d p_{t} & =\left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_{t}+\left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_{t} \\
& =\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{r} \cdot d p_{t}\right)+\left(\frac{1}{1-\rho \cdot \beta_{d p}}\right) \cdot\left(\beta_{d} \cdot d p_{t}\right)
\end{aligned}
$$

- In the empirical analysis, ρ has no effect because the persistences are the same $\left(=\beta_{d p}\right)$
- The effect comes from:

$$
\operatorname{Cov}(\mu, d p)=\beta_{r} \cdot \operatorname{Var}(d p) \quad \text { vs } \quad \operatorname{Cov}(g, d p)=\beta_{d} \cdot \operatorname{Var}(d p)
$$

- In fact, since $\operatorname{Cor}(\mu, d p)=\operatorname{Cor}(g, d p)$, the effect comes from:

$$
\sigma_{\mu}=\beta_{r} \cdot \sigma_{d p} \quad v s \quad \sigma_{g}=\beta_{d} \cdot \sigma_{d p}
$$

Does that mean the Paper's Message is Wrong?

Does that mean the Paper's Message is Wrong?

- No! It may still be about duration (and I think it largely is)

Does that mean the Paper's Message is Wrong?

- No! It may still be about duration (and I think it largely is)

	Market	Dividend strips
	(1)	(2)
ER	0.98	0.73
ER (implied)	0.97	0.63
EDG	0.03	0.37
EDG (implied)	0.02	0.27

Does that mean the Paper's Message is Wrong?

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$

Does that mean the Paper's Message is Wrong?

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$
- Gonçalves (2020b) shows how to think about $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$ from an ICAPM perspective:

$$
\begin{aligned}
\widetilde{m}_{t+1} & =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\left(\gamma_{t}-1\right) \cdot \widetilde{v w}_{t+1} \\
& =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\lambda^{\prime} \widetilde{s}_{t+1}
\end{aligned}
$$

Does that mean the Paper's Message is Wrong?

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$
- Gonçalves (2020b) shows how to think about $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$ from an ICAPM perspective:

$$
\begin{aligned}
\widetilde{m}_{t+1} & =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\left(\gamma_{t}-1\right) \cdot \widetilde{v W}_{t+1} \\
& =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\lambda^{\prime} \widetilde{s}_{t+1}
\end{aligned}
$$

- Duration endogenously determines market β

Does that mean the Paper's Message is Wrong?

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$
- Gonçalves (2020b) shows how to think about $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$ from an ICAPM perspective:

$$
\begin{aligned}
\widetilde{m}_{t+1} & =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\left(\gamma_{t}-1\right) \cdot \widetilde{v W}_{t+1} \\
& =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\lambda^{\prime} \widetilde{s}_{t+1}
\end{aligned}
$$

- Duration endogenously determines market β
- \uparrow Dur $\Rightarrow \uparrow \beta_{w} \Rightarrow \uparrow \sigma_{\mu} \Rightarrow \uparrow$ More of $\sigma_{d p}$ is driven by μ

Does that mean the Paper's Message is Wrong?

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$
- Gonçalves (2020b) shows how to think about $\sigma\left(\mu_{\text {DivStrip }}\right)<\sigma\left(\mu_{\text {Equity }}\right)$ from an ICAPM perspective:

$$
\begin{aligned}
\widetilde{m}_{t+1} & =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\left(\gamma_{t}-1\right) \cdot \widetilde{v W}_{t+1} \\
& =-\gamma_{t} \cdot \widetilde{r}_{w, t+1}-\lambda^{\prime} \widetilde{s}_{t+1}
\end{aligned}
$$

- Duration endogenously determines market β
- \uparrow Dur $\Rightarrow \uparrow \beta_{w} \Rightarrow \uparrow \sigma_{\mu} \Rightarrow \uparrow$ More of $\sigma_{d p}$ is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \delta_{g}} \cdot \sigma_{g}$

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	$\boldsymbol{t} \leq \mathbf{1 9 4 5}$	All	$\boldsymbol{y}>1945$			
		ρ	$\boldsymbol{\sigma}$	$\boldsymbol{\delta}$	$\boldsymbol{\sigma} \& \boldsymbol{\delta}$	
$\sigma_{\mu}^{L T} / \boldsymbol{\sigma}_{g}^{L T}$	0.72					
ER	29.2%					
EDG	70.8%					

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	$\boldsymbol{t} \leq \mathbf{1 9 4 5}$	All	$\boldsymbol{t}>\mathbf{1 9 4 5}$			
		$\boldsymbol{\rho}$	$\boldsymbol{\sigma}$	$\boldsymbol{\delta}$	$\boldsymbol{\sigma} \& \boldsymbol{\delta}$	
$\boldsymbol{\sigma}_{\boldsymbol{\mu}}^{\boldsymbol{L T}} / \boldsymbol{\sigma}_{\boldsymbol{g}}^{\boldsymbol{L T}}$	0.72	6.38				
ER	29.2%	98.1%				
EDG	70.8%	1.9%				

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	$\boldsymbol{t} \leq \mathbf{1 9 4 5}$	All	$\boldsymbol{t}>\mathbf{1 9 4 5}$			
		$\boldsymbol{\rho}$	$\boldsymbol{\sigma}$	$\boldsymbol{\delta}$	$\boldsymbol{\sigma} \& \boldsymbol{\delta}$	
$\boldsymbol{\sigma}_{\boldsymbol{\mu}}^{\boldsymbol{L T}} / \boldsymbol{\sigma}_{\boldsymbol{g}}^{\boldsymbol{L T}}$	0.72	6.38	0.79			
ER	29.2%	98.1%	34.4%			
EDG	70.8%	1.9%	65.6%			

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	$\boldsymbol{t} \leq \mathbf{1 9 4 5}$	All	$\boldsymbol{t}>\mathbf{1 9 4 5}$			
		$\boldsymbol{\rho}$	$\boldsymbol{\sigma}$	$\boldsymbol{\delta}$	$\boldsymbol{\sigma} \& \boldsymbol{\delta}$	
$\boldsymbol{\sigma}_{\boldsymbol{\mu}}^{\boldsymbol{L T}} / \boldsymbol{\sigma}_{\boldsymbol{g}}^{\boldsymbol{L T}}$	0.72	6.38	0.79	4.26		
ER	29.2%	98.1%	34.4%	99.6%		
EDG	70.8%	1.9%	65.6%	0.4%		

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	$\boldsymbol{t} \leq \mathbf{1 9 4 5}$	All	$\boldsymbol{t}>\mathbf{1 9 4 5}$			
		$\boldsymbol{\rho}$	$\boldsymbol{\sigma}$	$\boldsymbol{\sigma} \& \boldsymbol{\delta}$		
$\boldsymbol{\sigma}_{\boldsymbol{\mu}}^{\boldsymbol{L T}} / \boldsymbol{\sigma}_{\boldsymbol{g}}^{\boldsymbol{L T}}$	0.72	6.38	0.79	4.26	0.96	
ER	29.2%	98.1%	34.4%	99.6%	47.0%	
EDG	70.8%	1.9%	65.6%	0.4%	53.0%	

Do ρ, δ_{μ}, and δ_{g} Also Play a Role?

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=\beta_{d p}$ and $\operatorname{Cor}(\mu, g)=1$
- As such, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \beta_{d \rho}} \cdot \sigma_{g}$
- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{L T}=\frac{1}{1-\rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{L T}=\frac{1}{1-\rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	$\boldsymbol{t} \leq \mathbf{1 9 4 5}$	All	$\boldsymbol{t}>\mathbf{1 9 4 5}$			
		$\boldsymbol{\rho}$	$\boldsymbol{\sigma}$	$\boldsymbol{\delta}$	$\boldsymbol{\sigma} \& \boldsymbol{\delta}$	
$\boldsymbol{\sigma}_{\boldsymbol{\mu}}^{\boldsymbol{L T}} / \boldsymbol{\sigma}_{\boldsymbol{g}}^{\boldsymbol{L T}}$	0.72	6.38	0.79	4.26	0.96	5.64
$\mathbf{E R}$	29.2%	98.1%	34.4%	99.6%	47.0%	100.7%
EDG	70.8%	1.9%	65.6%	0.4%	53.0%	-0.7%

Outline

The Paper in a Nutshell

My Comments

Final Remarks

Final Remarks

- The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

Final Remarks

- The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

- I recommend reading the paper and I expect it to publish well

Final Remarks

- The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

- I recommend reading the paper and I expect it to publish well
- It would be useful to:

Final Remarks

- The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
- Recognize that the results are about $\sigma_{\mu} / \sigma_{g}$ and not ρ

Final Remarks

- The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
- Recognize that the results are about $\sigma_{\mu} / \sigma_{g}$ and not ρ
- Start from a completely different motivation for why duration matters when decomposing returns (because it affects $\sigma_{\mu} / \sigma_{g}!$)

Final Remarks

- The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
- Recognize that the results are about $\sigma_{\mu} / \sigma_{g}$ and not ρ
- Start from a completely different motivation for why duration matters when decomposing returns (because it affects $\sigma_{\mu} / \sigma_{g}$!)
- Link the results to some economic framework that demonstrates the connection between duration and $\sigma_{\mu} / \sigma_{g}$

Final Remarks

- The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
- Recognize that the results are about $\sigma_{\mu} / \sigma_{g}$ and not ρ
- Start from a completely different motivation for why duration matters when decomposing returns (because it affects $\sigma_{\mu} / \sigma_{g}!$)
- Link the results to some economic framework that demonstrates the connection between duration and $\sigma_{\mu} / \sigma_{g}$
- Good luck!

