

Equity Duration and Predictability

Benjamin Golez and Peter Koudijs

Discussant: Andrei S. Gonçalves

EFA 2020

The Paper in a Nutshell

My Comments

Final Remarks

Outline

The Paper in a Nutshell

My Comments

Final Remarks

\uparrow Dividend Maturity \Rightarrow \uparrow % of Var(dp) Explained by μ

• 1-Year Dividend Strip:

$$P^{(1)} = D_1 \cdot e^{-\mu_1}$$

$$= D_1 \cdot e^{-\mu_1}$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

• 2-Year Dividend Strip:

 $P^{(2)} = D_2 \cdot e^{-(\mu_1 + \mu_2)}$ = D \cdot e^{(a_1 + a_2) - (a_1 + a_2)} + $dp^{(2)} = (\mu_1 + \mu_2) - (g_1 + g_2)$

\uparrow Dividend Maturity \Rightarrow \uparrow % of Var(dp) Explained by μ

• 1-Year Dividend Strip:

• 2-Year Dividend Strip:

$$P^{(2)} = D_2 \cdot e^{-(\mu_1 + \mu_2)}$$

= $D \cdot e^{(g_1 + g_2) - (\mu_1 + \mu_2)}$
 ψ

\uparrow Dividend Maturity \Rightarrow \uparrow % of Var(dp) Explained by μ

• 1-Year Dividend Strip:

$$P^{(1)} = D_1 \cdot e^{-\mu_1}$$
$$= D \cdot e^{g_1 - \mu_1}$$
$$\Downarrow$$
$$dp^{(1)} = \mu_1 - g_1$$

• 2-Year Dividend Strip:

$$P^{(2)} = D_2 \cdot e^{-(\mu_1 + \mu_2)}$$

= $D \cdot e^{(g_1 + g_2) - (\mu_1 + \mu_2)}$
 \Downarrow
$$dp^{(2)} = (\mu_1 + \mu_2) - (g_1 + g_2)$$

\uparrow Equity Duration \Rightarrow \uparrow % of Var(dp) Explained by μ

• AR(1) processes for μ and g (ignoring constants):

• Then, the dividend price ratio is (ignoring constants):

• And Gonçalves (2020a) shows that $Dur~pprox~1+e^{-dp}~=~rac{1}{1-a}$

\uparrow Equity Duration \Rightarrow \uparrow % of Var(dp) Explained by μ

• AR(1) processes for μ and g (ignoring constants):

$$\mu_{t+1} = \delta_{\mu} \cdot \mu_t + \epsilon_{t+1}^{\mu}$$
$$g_{t+1} = \delta_g \cdot g_t + \epsilon_{t+1}^g$$

• Then, the dividend price ratio is (ignoring constants):

• And Gonçalves (2020a) shows that $Dur~pprox~1+e^{-dp}~=~rac{1}{1-d}$

- \uparrow Equity Duration \Rightarrow \uparrow % of Var(dp) Explained by μ
 - AR(1) processes for μ and g (ignoring constants):

$$\mu_{t+1} = \delta_{\mu} \cdot \mu_t + \epsilon_{t+1}^{\mu}$$
$$g_{t+1} = \delta_g \cdot g_t + \epsilon_{t+1}^g$$

$$dp_{t} = \mathbb{E}_{t} \left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j} \right] - \mathbb{E}_{t} \left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j} \right]$$
$$= \left(\frac{1}{1 - \rho \cdot \delta_{t}} \right) \mu_{t} + \left(\frac{1}{1 - \rho \cdot \delta_{t}} \right) \cdot \beta_{t}$$

- $\circ~$ If $\rho=$ 0, persistence does not matter
- $\circ~$ If ho=1, persistence matters a lot

• And Gonçalves (2020a) shows that $Dur \approx 1 + e^{-dp} = \frac{1}{1-d}$

- \uparrow Equity Duration \Rightarrow \uparrow % of Var(dp) Explained by μ
 - AR(1) processes for μ and g (ignoring constants):

$$\mu_{t+1} = \delta_{\mu} \cdot \mu_t + \epsilon_{t+1}^{\mu}$$
$$g_{t+1} = \delta_{g} \cdot g_t + \epsilon_{t+1}^{g}$$

$$dp_t = \mathbb{E}_t \left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j} \right] - \mathbb{E}_t \left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j} \right]$$
$$= \left(\frac{1}{1 - \rho \cdot \delta_{\mu}} \right) \cdot \mu_t + \left(\frac{1}{1 - \rho \cdot \delta_g} \right) \cdot g_t$$

- If $\rho = 0$, persistence does not matter
- $\circ~$ If ho=1, persistence matters a lot

• And Gonçalves (2020a) shows that $Dur \approx 1 + e^{-dp} = \frac{1}{1-e^{-dp}}$

- \uparrow Equity Duration \Rightarrow \uparrow % of Var(dp) Explained by μ
 - AR(1) processes for μ and g (ignoring constants):

$$\mu_{t+1} = \delta_{\mu} \cdot \mu_t + \epsilon_{t+1}^{\mu}$$
$$g_{t+1} = \delta_g \cdot g_t + \epsilon_{t+1}^g$$

$$dp_t = \mathbb{E}_t \left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j} \right] - \mathbb{E}_t \left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j} \right]$$
$$= \left(\frac{1}{1 - \rho \cdot \delta_{\mu}} \right) \cdot \mu_t + \left(\frac{1}{1 - \rho \cdot \delta_g} \right) \cdot g_t$$

• If $\rho = 0$, persistence does not matter

• If $\rho = 1$, persistence matters a lot

• And Gonçalves (2020a) shows that $Dur~pprox~1+e^{-dp}~=~rac{1}{1-e^{-dp}}$

- \uparrow Equity Duration \Rightarrow \uparrow % of Var(dp) Explained by μ
 - AR(1) processes for μ and g (ignoring constants):

$$\mu_{t+1} = \delta_{\mu} \cdot \mu_t + \epsilon_{t+1}^{\mu}$$
$$g_{t+1} = \delta_g \cdot g_t + \epsilon_{t+1}^g$$

$$dp_t = \mathbb{E}_t \left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j} \right] - \mathbb{E}_t \left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j} \right]$$
$$= \left(\frac{1}{1 - \rho \cdot \delta_{\mu}} \right) \cdot \mu_t + \left(\frac{1}{1 - \rho \cdot \delta_g} \right) \cdot g_t$$

• If $\rho = 0$, persistence does not matter

 $\circ~$ If $\rho=$ 1, persistence matters a lot

• And Gonçalves (2020a) shows that $Dur \approx 1 + e^{-\overline{dp}} = \frac{1}{1-a}$

 $r_{t+1} = \beta_r \cdot dp_t + \epsilon_{t+1}^r$

 $\Delta d_{t+1} = \beta_d \cdot dp_t + \epsilon^d_{t+1} \quad \Rightarrow$

 $dp_{t+1} = \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp}$

 $ig Var_r(dp) = eta_r \ / \ (1 -
ho \cdot eta_{dp}) \ Var_d(dp) = eta_d \ / \ (1 -
ho \cdot eta_{dp})$

$$r_{t+1} = \beta_r \cdot dp_t + \epsilon_{t+1}^r$$

$$\Delta d_{t+1} = \beta_d \cdot dp_t + \epsilon_{t+1}^d$$

$$dp_{t+1} = \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp}$$

 $ig| egin{array}{ll} {\sf Var}_r(dp) \, = \, eta_r \, / \, (1 -
ho \cdot eta_{dp}) \ {igvee} {\sf Var}_d(dp) \, = \, eta_d \, / \, (1 -
ho \cdot eta_{dp}) \end{array}$

$$\begin{aligned} r_{t+1} &= \beta_r \cdot dp_t + \epsilon_{t+1}^r \\ \Delta d_{t+1} &= \beta_d \cdot dp_t + \epsilon_{t+1}^d \implies \begin{cases} Var_r(dp) &= \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) &= \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases} \\ dp_{t+1} &= \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp} \end{aligned}$$

$$r_{t+1} = \beta_r \cdot dp_t + \epsilon_{t+1}^r$$

$$\Delta d_{t+1} = \beta_d \cdot dp_t + \epsilon_{t+1}^d \Rightarrow \begin{cases} Var_r(dp) = \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) = \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases}$$

$$dp_{t+1} = \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp}$$

	Market	Dividend strips
	(1)	(2)
ER	0.98	0.73
ER (implied)	0.97	0.63
EDG	0.03	0.37
EDG (implied)	0.02	0.27

$$r_{t+1} = \beta_r \cdot dp_t + \epsilon_{t+1}^r$$

$$\Delta d_{t+1} = \beta_d \cdot dp_t + \epsilon_{t+1}^d \Rightarrow \begin{cases} Var_r(dp) = \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) = \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases}$$

$$dp_{t+1} = \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp}$$

	Market	Dividend strips
	(1)	(2)
ER	0.98	0.73
ER (implied)	0.97	0.63
EDG	0.03	0.37
EDG (implied)	0.02	0.27

$$\begin{aligned} r_{t+1} &= \beta_r \cdot dp_t + \epsilon_{t+1}^r \\ \Delta d_{t+1} &= \beta_d \cdot dp_t + \epsilon_{t+1}^d \implies \begin{cases} Var_r(dp) &= \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) &= \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases} \\ dp_{t+1} &= \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp} \end{aligned}$$

$$r_{t+1} = \beta_r \cdot dp_t + \epsilon_{t+1}^r$$

$$\Delta d_{t+1} = \beta_d \cdot dp_t + \epsilon_{t+1}^d \Rightarrow \begin{cases} Var_r(dp) = \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) = \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases}$$

$$dp_{t+1} = \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp}$$

	1629-1945	1945-2017
	(1)	(2)
ER	0.34	0.89
ER (implied)	0.37	0.89
EDG	0.63	0.11
EDG (implied)	0.66	0.11

$$\begin{aligned} r_{t+1} &= \beta_r \cdot dp_t + \epsilon_{t+1}^r \\ \Delta d_{t+1} &= \beta_d \cdot dp_t + \epsilon_{t+1}^d \implies \begin{cases} Var_r(dp) &= \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) &= \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases} \\ dp_{t+1} &= \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp} \end{aligned}$$

	1629-1945	1945-2017
	(1)	(2)
ER	0.34	0.89
ER (implied)	0.37	0.89
EDG	0.63	0.11
EDG (implied)	0.66	0.11

$$\begin{aligned} r_{t+1} &= \beta_r \cdot dp_t + \epsilon'_{t+1} \\ \Delta d_{t+1} &= \beta_d \cdot dp_t + \epsilon^d_{t+1} \implies \begin{cases} Var_r(dp) &= \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) &= \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases} \\ dp_{t+1} &= \beta_{dp} \cdot dp_t + \epsilon^{dp}_{t+1} \end{aligned}$$

Decomposing Var(dp): Cross-Sectional Analysis

$$\begin{aligned} r_{t+1} &= \beta_r \cdot dp_t + \epsilon_{t+1}^r \\ \Delta d_{t+1} &= \beta_d \cdot dp_t + \epsilon_{t+1}^d \implies \begin{cases} Var_r(dp) &= \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) &= \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases} \\ dp_{t+1} &= \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp} \end{aligned}$$

Decomposing Var(dp): Cross-Sectional Analysis

$$r_{t+1} = \beta_r \cdot dp_t + \epsilon_{t+1}^r$$

$$\Delta d_{t+1} = \beta_d \cdot dp_t + \epsilon_{t+1}^d \Rightarrow \begin{cases} Var_r(dp) = \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) = \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases}$$

$$dp_{t+1} = \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp}$$

	Below 0.5	Above 0.5
	(5)	(6)
ER	0.93	0.60
ER (implied)	0.88	0.55
EDG	0.12	0.45
EDG (implied)	0.07	0.40

Decomposing Var(dp): Cross-Sectional Analysis

$$r_{t+1} = \beta_r \cdot dp_t + \epsilon_{t+1}^r$$

$$\Delta d_{t+1} = \beta_d \cdot dp_t + \epsilon_{t+1}^d \Rightarrow \begin{cases} Var_r(dp) = \beta_r / (1 - \rho \cdot \beta_{dp}) \\ Var_d(dp) = \beta_d / (1 - \rho \cdot \beta_{dp}) \end{cases}$$

$$dp_{t+1} = \beta_{dp} \cdot dp_t + \epsilon_{t+1}^{dp}$$

	Below 0.5	Above 0.5
	(5)	(6)
ER	0.93	0.60
ER (implied)	0.88	0.55
EDG	0.12	0.45
EDG (implied)	0.07	0.40

The Paper in a Nutshell

My Comments

Final Remarks

Outline

The Paper in a Nutshell

My Comments

Final Remarks

$$dp_t = \left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_t + \left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_t$$

I do not think so!

- Data: DP decreases from 3.4% (ho=0.97) to 4.9% (ho=0.95)
- Data: ER increases from 34% to 89%

$$dp_t = \left(\frac{1}{1-\rho\cdot\delta_{\mu}}\right)\cdot\mu_t + \left(\frac{1}{1-\rho\cdot\delta_{g}}\right)\cdot g_t$$

• I do not think so!

- Data: DP decreases from 3.4% (ho=0.97) to 4.9% (ho=0.95)
- Data: ER increases from 34% to 89%

$$dp_t = \left(\frac{1}{1-\rho\cdot\delta_{\mu}}\right)\cdot\mu_t + \left(\frac{1}{1-\rho\cdot\delta_{g}}\right)\cdot g_t$$

• I do not think so!

Table 7: Simulations

Payout (%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25
ER EDG	0.97 0.94 0.05	0.96 0.91 0.09	0.96 0.87 0.12	0.95 0.84 0.15	0.80	0.93 0.77 0.21	0.92 0.74 0.23	9. 0. 0.

• Data: DP decreases from 3.4% (ho= 0.97) to 4.9% (ho= 0.95)

$$dp_t = \left(rac{1}{1-
ho\cdot\delta_{\mu}}
ight)\cdot\mu_t + \left(rac{1}{1-
ho\cdot\delta_{g}}
ight)\cdot g_t$$

• I do not think so!

Table 7: Simulations

Payout (%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

• Data: DP decreases from 3.4% (ho = 0.97) to 4.9% (ho = 0.95)

$$dp_t = \left(rac{1}{1-
ho\cdot\delta_{\mu}}
ight)\cdot\mu_t + \left(rac{1}{1-
ho\cdot\delta_{g}}
ight)\cdot g_t$$

• I do not think so!

Table 7: Simulations

Payout (%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
								·
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

• Data: DP decreases from 3.4% (ho = 0.97) to 4.9% (ho = 0.95)

$$dp_t = \left(rac{1}{1-
ho\cdot\delta_{\mu}}
ight)\cdot\mu_t + \left(rac{1}{1-
ho\cdot\delta_{g}}
ight)\cdot g_t$$

• I do not think so!

Table 7: Simulations

Payout (%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ .	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
							1	·
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

• Data: DP decreases from 3.4% (ho = 0.97) to 4.9% (ho = 0.95)

$$dp_t = \left(rac{1}{1-
ho\cdot\delta_{\mu}}
ight)\cdot\mu_t + \left(rac{1}{1-
ho\cdot\delta_{g}}
ight)\cdot g_t$$

• I do not think so!

Table 7: Simulations

Payout (%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ .	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
								·
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

• Data: DP decreases from 3.4% (ho = 0.97) to 4.9% (ho = 0.95)

$$dp_t = \left(rac{1}{1-
ho\cdot\delta_{\mu}}
ight)\cdot\mu_t + \left(rac{1}{1-
ho\cdot\delta_{g}}
ight)\cdot g_t$$

• I do not think so!

Table 7: Simulations

Payout (%)	30	40	50	60	70	80	90	100
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DP (%)	2.81	3.75	4.70	5.67	6.65	7.64	8.65	9.70
ρ .	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91
	_							
ER	0.94	0.91	0.87	0.84	0.80	0.77	0.74	0.72
EDG	0.05	0.09	0.12	0.15	0.18	0.21	0.23	0.25

- Data: DP decreases from 3.4% (ho=0.97) to 4.9% (ho=0.95)
- Data: ER increases from 34% to 89%

It is not about ρ ...it is about σ_{μ}/σ_{g} $dp_{t} = \left(\frac{1}{1-\rho\cdot\delta_{\mu}}\right)\cdot\mu_{t} + \left(\frac{1}{1-\rho\cdot\delta_{g}}\right)\cdot g_{t}$ $= \left(\frac{1}{1-\rho\cdot\delta_{g}}\right)\cdot\left(\beta_{t}-dp\right) + \left(\frac{1}{1-\rho\cdot\delta_{g}}\right)\cdot\left(\beta_{t}-dp\right)$

- In the empirical analysis, ρ has no effect because the persistences are the same (= β_{dp})
- The effect comes from:

In fact, since Cor(µ, dp) = Cor(g, dp), the effect comes from:

$$dp_t = \left(\frac{1}{1-\rho \cdot \delta_{\mu}}\right) \cdot \mu_t + \left(\frac{1}{1-\rho \cdot \delta_{g}}\right) \cdot g_t$$
$$= \left(\frac{1}{1-\rho \cdot \beta_{dp}}\right) \cdot (\beta_r \cdot dp_t) + \left(\frac{1}{1-\rho \cdot \beta_{dp}}\right) \cdot (\beta_d \cdot dp_t)$$

 In the empirical analysis, ρ has no effect because the persistences are the same (= β_{dp})

• The effect comes from:

In fact, since Cor(µ, dp) = Cor(g, dp), the effect comes from:

$$dp_t = \left(rac{1}{1-
ho\cdot\delta_{\mu}}
ight)\cdot\mu_t + \left(rac{1}{1-
ho\cdot\delta_g}
ight)\cdot g_t$$

$$= \left(\frac{1}{1-\rho\cdot\beta_{dp}}\right)\cdot\left(\beta_{r}\cdot dp_{t}\right) + \left(\frac{1}{1-\rho\cdot\beta_{dp}}\right)\cdot\left(\beta_{d}\cdot dp_{t}\right)$$

- In the empirical analysis, ρ has no effect because the persistences are the same (= β_{dp})
- The effect comes from:

In fact, since Cor(µ, dp) = Cor(g, dp), the effect comes from:

$$dp_t = \left(\frac{1}{1-\rho\cdot\delta_{\mu}}\right)\cdot\mu_t + \left(\frac{1}{1-\rho\cdot\delta_{g}}\right)\cdot g_t$$

$$= \left(\frac{1}{1-\rho\cdot\beta_{dp}}\right)\cdot\left(\beta_r\cdot dp_t\right) + \left(\frac{1}{1-\rho\cdot\beta_{dp}}\right)\cdot\left(\beta_d\cdot dp_t\right)$$

- In the empirical analysis, ρ has no effect because the persistences are the same (= β_{dp})
- The effect comes from:

 $Cov(\mu, dp) = \beta_r \cdot Var(dp)$ vs $Cov(g, dp) = \beta_d \cdot Var(dp)$

In fact, since Cor(μ, dp) = Cor(g, dp), the effect comes from:

$$dp_t = \left(\frac{1}{1-\rho\cdot\delta_{\mu}}\right)\cdot\mu_t + \left(\frac{1}{1-\rho\cdot\delta_{g}}\right)\cdot g_t$$

$$= \left(rac{1}{1-
ho\cdoteta_{dp}}
ight)\cdot(eta_r\cdot dp_t) + \left(rac{1}{1-
ho\cdoteta_{dp}}
ight)\cdot(eta_d\cdot dp_t)$$

- In the empirical analysis, ρ has no effect because the persistences are the same (= β_{dp})
- The effect comes from:

$$Cov(\mu, dp) = \beta_r \cdot Var(dp)$$
 vs $Cov(g, dp) = \beta_d \cdot Var(dp)$

• In fact, since $Cor(\mu, dp) = Cor(g, dp)$, the effect comes from:

$$\sigma_{\mu} = \beta_{r} \cdot \sigma_{dp}$$
 vs $\sigma_{g} = \beta_{d} \cdot \sigma_{dp}$

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$
- Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$-\gamma_t \cdot \tilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \tilde{v} \tilde{w}_{t+1}$$
$$-\gamma_t \cdot \tilde{r}_{w,t+1} - \lambda' \tilde{s}_{t+1}$$

- Duration endogenously determines market eta
- \uparrow Dur \Rightarrow \uparrow β_w \Rightarrow \uparrow σ_μ \Rightarrow \uparrow More of σ_{dp} is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that σ(μ_{DivStrip}) < σ(μ_{Equity})
- Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$-\gamma_t \cdot \tilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \widetilde{vw}_{t+1}$$
$$-\gamma_t \cdot \tilde{r}_{w,t+1} - \lambda' \tilde{s}_{t+1}$$

- Duration endogenously determines market eta
- \uparrow Dur \Rightarrow \uparrow β_w \Rightarrow \uparrow σ_μ \Rightarrow \uparrow More of σ_{dp} is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

• No! It may still be about duration (and I think it largely is)

	Market	Dividend strips
	(1)	(2)
ER	0.98	0.73
ER (implied)	0.97	0.63
EDG	0.03	0.37
EDG (implied)	0.02	0.27

Gormsen (2020) shows that σ(μ_{DivStrip}) < σ(μ_{Equity})

• Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$-\gamma_t \cdot \widetilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \widetilde{vw}_{t+1}$$

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$
- Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$-\gamma_t \cdot \tilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \tilde{v} \tilde{w}_{t+1}$$
$$-\gamma_t \cdot \tilde{r}_{w,t+1} - \lambda' \tilde{s}_{t+1}$$

- Duration endogenously determines market eta
- \uparrow Dur \Rightarrow \uparrow β_w \Rightarrow \uparrow σ_μ \Rightarrow \uparrow More of σ_{dp} is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$
- Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$\widetilde{m}_{t+1} = -\gamma_t \cdot \widetilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \widetilde{vw}_{t+1}$$
$$= -\gamma_t \cdot \widetilde{r}_{w,t+1} - \lambda' \widetilde{s}_{t+1}$$

- Duration endogenously determines market eta
- \uparrow Dur \Rightarrow \uparrow β_w \Rightarrow \uparrow σ_μ \Rightarrow \uparrow More of σ_{dp} is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$
- Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$\begin{split} \widetilde{m}_{t+1} &= -\gamma_t \cdot \widetilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \widetilde{vw}_{t+1} \\ &= -\gamma_t \cdot \widetilde{r}_{w,t+1} - \lambda' \widetilde{s}_{t+1} \end{split}$$

- Duration endogenously determines market β
- \uparrow Dur \Rightarrow \uparrow β_w \Rightarrow \uparrow σ_μ \Rightarrow \uparrow More of σ_{dp} is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$
- Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$\begin{split} \widetilde{m}_{t+1} &= -\gamma_t \cdot \widetilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \widetilde{vw}_{t+1} \\ &= -\gamma_t \cdot \widetilde{r}_{w,t+1} - \lambda' \widetilde{s}_{t+1} \end{split}$$

- Duration endogenously determines market β
- \uparrow Dur \Rightarrow \uparrow β_w \Rightarrow \uparrow σ_μ \Rightarrow \uparrow More of σ_{dp} is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

- No! It may still be about duration (and I think it largely is)
- Gormsen (2020) shows that $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$
- Gonçalves (2020b) shows how to think about $\sigma(\mu_{DivStrip}) < \sigma(\mu_{Equity})$ from an ICAPM perspective:

$$\widetilde{m}_{t+1} = - \gamma_t \cdot \widetilde{r}_{w,t+1} - (\gamma_t - 1) \cdot \widetilde{vw}_{t+1}$$
$$= - \gamma_t \cdot \widetilde{r}_{w,t+1} - \lambda' \widetilde{s}_{t+1}$$

- Duration endogenously determines market β
- \uparrow Dur \Rightarrow \uparrow β_w \Rightarrow \uparrow σ_μ \Rightarrow \uparrow More of σ_{dp} is driven by μ
- Section 2 (i.e., the motivation) should argue that the duration effect can happen through σ_{μ} (not only through ρ)

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

• The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

I estimate the model as in Binsbergen and Koijen (2010)

• In this case, $\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$ and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

- I estimate the model as in Binsbergen and Koijen (2010)
- In this case, $\sigma_{\mu}^{LT} = \frac{1}{1-\rho\cdot\delta_{\mu}}\cdot\sigma_{\mu}$ and $\sigma_{g}^{LT} = \frac{1}{1-\rho\cdot\delta_{g}}\cdot\sigma_{g}$

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	<i>t <</i> 1045	<i>t</i> > 1945				
	$l \ge 1945$	All	ρ	σ	δ	$\sigma \& \delta$
$\sigma_{\mu}^{ extsf{LT}}/\sigma_{g}^{ extsf{LT}}$	0.72					
\mathbf{ER}	29.2%					
EDG	70.8%					

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	<i>t <</i> 1045		t > 1945			
	t <u><</u> 1945	All	ρ	σ	δ	$\sigma \& \delta$
$\sigma_{\mu}^{ extsf{LT}}/\sigma_{g}^{ extsf{LT}}$	0.72	6.38				
\mathbf{ER}	29.2%	98.1%				
EDG	70.8%	1.9%				

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	<i>t <</i> 1045		<i>t</i> > 1945				
i arameters	t <u>~</u> 1945	All	ρ	σ	δ	$\sigma \& \delta$	
$\sigma_{\mu}^{ extsf{LT}}/\sigma_{g}^{ extsf{LT}}$	0.72	6.38	0.79				
\mathbf{ER}	29.2%	98.1%	34.4%				
EDG	70.8%	1.9%	65.6%				

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	+ < 1015	t > 1945				
i arameters	t <u>~</u> 1945	All	ρ	σ	δ	$\sigma \& \delta$
$\sigma_{\mu}^{ extsf{LT}}/\sigma_{g}^{ extsf{LT}}$	0.72	6.38	0.79	4.26		
\mathbf{ER}	29.2%	98.1%	34.4%	99.6%		
EDG	70.8%	1.9%	65.6%	0.4%		

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	<i>t <</i> 10/15	t > 1945				
i arameters	t <u>~</u> 1945	All	ρ	σ	δ	$\sigma \& \delta$
$\sigma_{\mu}^{ extsf{LT}}/\sigma_{g}^{ extsf{LT}}$	0.72	6.38	0.79	4.26	0.96	
\mathbf{ER}	29.2%	98.1%	34.4%	99.6%	47.0%	
EDG	70.8%	1.9%	65.6%	0.4%	53.0%	

- The empirical analysis uses $\delta_{\mu}=\delta_{g}=eta_{dp}$ and ${\it Cor}(\mu,g)=1$

• As such,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \beta_{dp}} \cdot \sigma_{g}$

• In this case,
$$\sigma_{\mu}^{LT} = \frac{1}{1 - \rho \cdot \delta_{\mu}} \cdot \sigma_{\mu}$$
 and $\sigma_{g}^{LT} = \frac{1}{1 - \rho \cdot \delta_{g}} \cdot \sigma_{g}$

Parameters	<i>t <</i> 10/15	t > 1945					
i arameters	t <u>~</u> 1945	All	ρ	σ	δ	$\sigma \& \delta$	
$\sigma_{\mu}^{ extsf{LT}}/\sigma_{g}^{ extsf{LT}}$	0.72	6.38	0.79	4.26	0.96	5.64	
\mathbf{ER}	29.2%	98.1%	34.4%	99.6%	47.0%	100.7%	
EDG	70.8%	1.9%	65.6%	0.4%	53.0%	-0.7%	

The Paper in a Nutshell

My Comments

Final Remarks

Outline

The Paper in a Nutshell

My Comments

Final Remarks

• The paper is very interesting and makes an important point:

- I recommend reading the paper and I expect it to publish well
- It would be useful to:

• The paper is very interesting and makes an important point:

- I recommend reading the paper and I expect it to publish well
- It would be useful to:

• The paper is very interesting and makes an important point:

Duration matters to understand the sources of price variation!

- I recommend reading the paper and I expect it to publish well
- It would be useful to:

 $\circ~$ Recognize that the results are about σ_μ/σ_g and not ho

- Start from a completely different motivation for why duration matters when decomposing returns (because it affects $\sigma_{\mu}/\sigma_{g}!$)
- Link the results to some economic framework that demonstrates the connection between duration and σ_{μ}/σ_{g}
- Good luck!

• The paper is very interesting and makes an important point:

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
 - $\,\circ\,$ Recognize that the results are about σ_μ/σ_g and not ρ
 - Start from a completely different motivation for why duration matters when decomposing returns (because it affects σ_μ/σ_g!)
 - $\circ\,$ Link the results to some economic framework that demonstrates the connection between duration and $\sigma_\mu/\sigma_{\rm g}$
- Good luck!

• The paper is very interesting and makes an important point:

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
 - $\,\circ\,$ Recognize that the results are about σ_μ/σ_g and not ρ
 - Start from a completely different motivation for why duration matters when decomposing returns (because it affects $\sigma_{\mu}/\sigma_{g}!$)
 - Link the results to some economic framework that demonstrates the connection between duration and σ_{μ}/σ_{g}
- Good luck!

• The paper is very interesting and makes an important point:

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
 - $\,\circ\,$ Recognize that the results are about σ_μ/σ_g and not ρ
 - Start from a completely different motivation for why duration matters when decomposing returns (because it affects $\sigma_{\mu}/\sigma_{g}!$)
 - $\circ\,$ Link the results to some economic framework that demonstrates the connection between duration and σ_μ/σ_g

• The paper is very interesting and makes an important point:

- I recommend reading the paper and I expect it to publish well
- It would be useful to:
 - $\,\circ\,$ Recognize that the results are about σ_μ/σ_g and not ρ
 - Start from a completely different motivation for why duration matters when decomposing returns (because it affects $\sigma_{\mu}/\sigma_{g}!$)
 - $\circ\,$ Link the results to some economic framework that demonstrates the connection between duration and σ_μ/σ_g
- Good luck!