Fundamental Anomalies

Erica X.N. Li, Guoliang Ma, Shujing Wang, and Cindy Yu

Discussant: Andrei S. Gonçalves

2021 UConn Finance Conference

Outline

The Paper

My Comments

Final Remarks
$\mathbb{E}[R]$ from Firm's Perspective

$\mathbb{E}[R]$ from Firm's Perspective

- Firm's Net Present Value (NPV) Rule:

$$
\mathrm{NPV}=\quad \text { Inv } \partial \text { Benefit } \quad-\quad \text { Inv } \partial \text { Cost }
$$

$\mathbb{E}[R]$ from Firm's Perspective

- Firm's Net Present Value (NPV) Rule:

$$
\begin{array}{rlll}
\mathrm{NPV} & =\quad \operatorname{Inv} \partial \text { Benefit } & - & \text { Inv } \partial \operatorname{Cost} \\
& =\widehat{C F}(I) /(1+W A C C) & - & \operatorname{Cost}(I)
\end{array}
$$

$\mathbb{E}[R]$ from Firm's Perspective

- Firm's Net Present Value (NPV) Rule:

$$
\begin{array}{rlrl}
\mathrm{NPV} & = & \text { Inv } \partial \text { Benefit } & \\
& & & \text { Inv } \partial \operatorname{Cost} \\
& =\widehat{C F}(I) /(1+W A C C) & -\operatorname{Cost}(I) \\
0 & &
\end{array}
$$

$\mathbb{E}[R]$ from Firm's Perspective

- Firm's Net Present Value (NPV) Rule:

$$
\begin{array}{rlll}
\mathrm{NPV} & = & \operatorname{Inv} \partial \text { Benefit } & - \\
& \operatorname{Inv} \partial \operatorname{Cost} \\
& =\widehat{C F}(I) /(1+W A C C) & - & \operatorname{Cost}(I) \\
0 & =\mathbb{E}\left[C F\left(I^{*}\right)\right] / \mathbb{E}[R] & & -\operatorname{Cost}\left(I^{*}\right)
\end{array}
$$

$\mathbb{E}[R]$ from Firm's Perspective

- Firm's Net Present Value (NPV) Rule:

$$
\begin{array}{rlcll}
\mathrm{NPV} & = & \operatorname{Inv} \partial \text { Benefit } & - & \operatorname{Inv} \partial \operatorname{Cost} \\
& =\widehat{C F}(I) /(1+W A C C) & - & \operatorname{Cost}(I) \\
0 & = & \mathbb{E}\left[C F\left(I^{*}\right)\right] / \mathbb{E}[R] & & \\
& & \\
& & \\
& & \\
\mathbb{E}[R] & =\mathbb{E}\left[C F\left(I^{*}\right)\right] / \operatorname{Cost}\left(I^{*}\right) \\
& &
\end{array}
$$

$\mathbb{E}[R]$ from Firm's Perspective

- Firm's Net Present Value (NPV) Rule:

$$
\begin{array}{rlcll}
\mathrm{NPV} & = & \operatorname{Inv} \partial \text { Benefit } & - & \operatorname{Inv} \partial \operatorname{Cost} \\
& =\widehat{C F}(I) /(1+W A C C) & - & \operatorname{Cost}(I) \\
0 & = & \mathbb{E}\left[C F\left(I^{*}\right)\right] / \mathbb{E}[R] & & \\
& & \\
& & \\
& & \\
\mathbb{E}[R] & =\mathbb{E}\left[C F\left(I^{*}\right)\right] / \operatorname{Cost}\left(I^{*}\right) \\
& &
\end{array}
$$

q-theory formalizes this logic and implies: $R^{S}=R^{F}$

The Empirical Challenge of $\mathbb{E}\left[R^{S}\right]=\mathbb{E}\left[R^{F}\right]$

The Empirical Challenge of $\mathbb{E}\left[R^{S}\right]=\mathbb{E}\left[R^{F}\right]$

The Empirical Challenge of $\mathbb{E}\left[R^{S}\right]=\mathbb{E}\left[R^{F}\right]$

	$\boxed{\mathrm{SUE}}$	B / M	$\overline{\mathrm{CI}}$
Matching			
	Expected	Returns	
a	7.7	22.3	1.0
	$[1.7]$	$[25.5]$	$[.3]$
α	.3	.5	.2
	$[.0]$	$[.3]$	$[.0]$

Campbell (2017): The Empirical Challenge Matters

"This problem, that different parameters are needed to fit each anomaly, is a pervasive one in the q-theoretic asset pricing literature (p. 275)."

Gonçalves, Xue, and Zhang (2020, RFS)

$$
r_{p}^{F}=r^{F}\left(r_{p}^{B a} ; w_{p}^{B} ; \frac{I_{p}}{K_{p}} ; \frac{Y_{p}}{K_{p}} ; \delta_{p}\right)
$$

Gonçalves, Xue, and Zhang (2020, RFS)

$$
\begin{aligned}
& r_{p}^{F}=r^{F}\left(r_{p}^{B a} ; w_{p}^{B} ; \frac{I_{p}}{K_{p}} ; \frac{Y_{p}}{K_{p}} ; \delta_{p}\right) \\
& r_{p}^{F}=\sum_{i=1}^{N_{p}} w_{i p} \times r^{F}\left(r_{i}^{B a} ; w_{i}^{B} ; \frac{I_{i}}{K_{i}} ; \frac{I_{i}}{K_{i}} ; \frac{Y_{i}}{K_{i}+W_{i}} ; \frac{K_{i}}{K_{i}+W_{i}} ; \delta_{i}\right)
\end{aligned}
$$

Gonçalves, Xue, and Zhang (2020, RFS)

$$
\begin{aligned}
& r_{p}^{F}=r^{F}\left(r_{p}^{B a} ; w_{p}^{B} ; \frac{I_{p}}{K_{p}} ; \frac{Y_{p}}{K_{p}} ; \delta_{p}\right) \\
& r_{p}^{F}=\sum_{i=1}^{N_{p}} w_{i p} \times r^{F}\left(r_{i}^{B a} ; w_{i}^{B} ; \frac{I_{i}}{K_{i}} ; \frac{I_{i}}{K_{i}} ; \frac{Y_{i}}{K_{i}+W_{i}} ; \frac{K_{i}}{K_{i}+W_{i}} ; \delta_{i}\right)
\end{aligned}
$$

Equal-Weighted Portfolios

Value-Weighted Portfolios

This Paper

This Paper

$$
r_{i}^{F}=r^{F}\left(r_{i}^{B a} ; w_{i}^{B} ; \frac{l_{i}}{K_{i}} ; \frac{l_{i}}{K_{i}} ; \frac{Y_{i}}{K_{i}+W_{i}} ; \frac{K_{i}}{K_{i}+W_{i}} ; \delta_{i}\right)
$$

This Paper

$$
r_{i}^{F}=r^{F}\left(r_{i}^{B a} ; w_{i}^{B} ; \frac{I_{i}}{K_{i}} ; \frac{I_{i}}{K_{i}} ; \frac{Y_{i}}{K_{i}+W_{i}} ; \frac{K_{i}}{K_{i}+W_{i}} ; \delta_{i}\right)
$$

Consumer Nondurables: γ

Consumer Nondurables: a

This Paper

$$
r_{i}^{F}=r^{F}\left(r_{i}^{B a} ; w_{i}^{B} ; \frac{I_{i}}{K_{i}} ; \frac{I_{i}}{K_{i}} ; \frac{Y_{i}}{K_{i}+W_{i}} ; \frac{K_{i}}{K_{i}+W_{i}} ; \delta_{i}\right)
$$

Consumer Nondurables: γ

Business Equipment: γ

Consumer Nondurables: a

Business Equipment: a

This Paper

$$
r_{i}^{F}=r^{F}\left(r_{i}^{B a} ; w_{i}^{B} ; \frac{I_{i}}{K_{i}} ; \frac{I_{i}}{K_{i}} ; \frac{Y_{i}}{K_{i}+W_{i}} ; \frac{K_{i}}{K_{i}+W_{i}} ; \delta_{i}\right)
$$

$\mathbb{E}[r]$ for 12 Anomalies

This Paper

$$
r_{i}^{F}=r^{F}\left(r_{i}^{B a} ; w_{i}^{B} ; \frac{I_{i}}{K_{i}} ; \frac{I_{i}}{K_{i}} ; \frac{Y_{i}}{K_{i}+W_{i}} ; \frac{K_{i}}{K_{i}+W_{i}} ; \delta_{i}\right)
$$

Aggregate Returns

Outline

The Paper

My Comments

Final Remarks

1) Compare Bayesian and Frequentist Methods

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

1) Compare Bayesian and Frequentist Methods

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- $r_{i t}^{F}=r^{F}\left(\right.$ Data $\left.; \theta_{j t}\right)$ and $\varpi_{i t}=V_{i t} / \Sigma_{i=1}^{N_{j t}} V_{i t}$

1) Compare Bayesian and Frequentist Methods

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- $r_{i t}^{F}=r^{F}\left(D a t a ; \theta_{j t}\right)$ and $\varpi_{i t}=V_{i t} / \sum_{i=1}^{N_{j t}} V_{i t}$
- Paper explores the effect of j and t, but not of the Bayesian framework

1) Compare Bayesian and Frequentist Methods

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- $r_{i t}^{F}=r^{F}\left(\right.$ Data $\left.; \theta_{j t}\right)$ and $\varpi_{i t}=V_{i t} / \sum_{i=1}^{N_{j t}} V_{i t}$
- Paper explores the effect of j and t, but not of the Bayesian framework
- You can estimate $\theta_{j t}$ at each t and for each j (by NLS)

1) Compare Bayesian and Frequentist Methods

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- $r_{i t}^{F}=r^{F}\left(\right.$ Data $\left.; \theta_{j t}\right)$ and $\varpi_{i t}=V_{i t} / \sum_{i=1}^{N_{j t}} V_{i t}$
- Paper explores the effect of j and t, but not of the Bayesian framework
- You can estimate $\theta_{j t}$ at each t and for each j (by NLS)
- How much does the fit improve as you change from the Frequentist (NLS) to the Bayesian (MCMC) framework?

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i d}{\sim} N(0,1)
$$

- (i) Variation in $\gamma_{j t}$

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Variation in $\gamma_{j t}$
- $\Pi_{i t}=\gamma \cdot Y_{i t}($ Gonçalves, Xue, and Zhang (2020))

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Variation in $\gamma_{j t}$
- $\Pi_{i t}=\gamma \cdot Y_{i t}$ (Gonçalves, Xue, and Zhang (2020))
- Is variation in $\gamma_{j t}$ in line with variation in $\Pi_{j t} / Y_{j t}$?

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Variation in $\gamma_{j t}$
- $\Pi_{i t}=\gamma \cdot Y_{i t}$ (Gonçalves, Xue, and Zhang (2020))
- Is variation in $\gamma_{j t}$ in line with variation in $\Pi_{j t} / Y_{j t}$?
- Gross profits (Sales - COGS) provides a rough estimate for $\Pi_{j t}$

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Variation in $\gamma_{j t}$
- $\Pi_{i t}=\gamma \cdot Y_{i t}$ (Gonçalves, Xue, and Zhang (2020))
- Is variation in $\gamma_{j t}$ in line with variation in $\Pi_{j t} / Y_{j t}$?
- Gross profits (Sales - COGS) provides a rough estimate for $\Pi_{j t}$
- (ii) Variation in $a_{j t}$

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Variation in $\gamma_{j t}$
- $\Pi_{i t}=\gamma \cdot Y_{i t}$ (Gonçalves, Xue, and Zhang (2020))
- Is variation in $\gamma_{j t}$ in line with variation in $\Pi_{j t} / Y_{j t}$?
- Gross profits (Sales - COGS) provides a rough estimate for $\Pi_{j t}$
- (ii) Variation in $a_{j t}$
- $\left(V_{i t}+B_{i t+1}\right) / K_{i t}=Q_{i t}=\left(1+a_{j t} \cdot\left(1-\tau_{t}\right) \cdot I_{i t} / K_{i t}\right)+W_{i t} / K_{i t}$

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Variation in $\gamma_{j t}$
- $\Pi_{i t}=\gamma \cdot Y_{i t}$ (Gonçalves, Xue, and Zhang (2020))
- Is variation in $\gamma_{j t}$ in line with variation in $\Pi_{j t} / Y_{j t}$?
- Gross profits (Sales - COGS) provides a rough estimate for $\Pi_{j t}$
- (ii) Variation in $a_{j t}$
- $\left(V_{i t}+B_{i t+1}\right) / K_{i t}=Q_{i t}=\left(1+a_{j t} \cdot\left(1-\tau_{t}\right) \cdot I_{i t} / K_{i t}\right)+W_{i t} / K_{i t}$
- Is variation in $a_{j t}$ in line with variation in $Q_{j t}$?

2) Check if Variation in $\gamma_{j t}$ and $a_{j t}$ is Economically Sensible

$$
r_{r_{t+1}^{s}}^{s}=r_{i t+1}^{F}+w_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim i^{i d} d(0,1)
$$

- (i) Variation in $\gamma_{j t}$
- $\Pi_{i t}=\gamma \cdot Y_{i t}$ (Gonçalves, Xue, and Zhang (2020))
- Is variation in $\gamma_{j t}$ in line with variation in $\Pi_{j t} / Y_{j t}$?
- Gross profits (Sales - COGS) provides a rough estimate for $\Pi_{j t}$
- (ii) Variation in $a_{j t}$
- $\left(V_{i t}+B_{i t+1}\right) / K_{i t}=Q_{i t}=\left(1+a_{j t} \cdot\left(1-\tau_{t}\right) \cdot I_{i t} / K_{i t}\right)+W_{i t} / K_{i t}$
- Is variation in $a_{j t}$ in line with variation in $Q_{j t}$?
- Is variation in $a_{j t}$ in line with the sensitivity of $Q_{i t}$ to $I_{i t} / K_{i t}$?

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{s}=r_{i t+1}^{F}+w_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim N(0,1)
$$

- Impossible to perfectly align $r_{i t}^{S}$ and $r_{i t}^{F}$

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{r_{t+1}^{s}}^{s}=r_{i t+1}^{E}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{t+1}^{r} \quad \text { with } e_{i t}^{r} \sim N(0,1)
$$

- Impossible to perfectly align $r_{i t}^{S}$ and $r_{i t}^{F}$
- Not relevant for prior papers as they rely on (portfolio) $\mathbb{E}[r]$

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{r_{t+1}^{s}}^{s}=r_{i t+1}^{F}+w_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim N(0,1)
$$

- Impossible to perfectly align $r_{i t}^{S}$ and $r_{i t}^{F}$
- Not relevant for prior papers as they rely on (portfolio) $\mathbb{E}[r]$
- Very relevant for this paper

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{s}=r_{i t+1}^{F}+w_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim N(0,1)
$$

- Impossible to perfectly align $r_{i t}^{S}$ and $r_{i t}^{F}$
- Not relevant for prior papers as they rely on (portfolio) $\mathbb{E}[r]$
- Very relevant for this paper
- Overfitting: time-varying $\theta_{j t}$ compensates for misalignment

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{r_{t+1}^{s}}^{s}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim i^{i d d} N(0,1)
$$

- Impossible to perfectly align $r_{i t}^{S}$ and $r_{i t}^{F}$
- Not relevant for prior papers as they rely on (portfolio) $\mathbb{E}[r]$
- Very relevant for this paper
- Overfitting: time-varying $\theta_{j t}$ compensates for misalignment
- This is why the specification with θ_{j} performs better OOS

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Autocorrelation "Solution"

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$
- $e_{i t}^{r} \stackrel{\text { iid }}{\sim} N(0,1)$ forces $\theta_{j t}$ to be artificially autocorrelated

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$
- $e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)$ forces $\theta_{j t}$ to be artificially autocorrelated
- Solution: allow for autocorrelation in $e_{i t}^{r}$

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim \text { iid } N(0,1)
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$
- $e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)$ forces $\theta_{j t}$ to be artificially autocorrelated
- Solution: allow for autocorrelation in $e_{i t}^{r}$
- (ii) Return Unsmoothing "Solution":

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim \text { iid } N(0,1)
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$
- $e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)$ forces $\theta_{j t}$ to be artificially autocorrelated
- Solution: allow for autocorrelation in $e_{i t}^{r}$
- (ii) Return Unsmoothing "Solution":
- Couts, Gonçalves, and Rossi (2020)

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \sim \text { iid } N(0,1)
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$
- $e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)$ forces $\theta_{j t}$ to be artificially autocorrelated
- Solution: allow for autocorrelation in $e_{i t}^{r}$
- (ii) Return Unsmoothing "Solution":
- Couts, Gonçalves, and Rossi (2020)
- Observed $r_{i t}^{F}$ is a Moving Average of true $r_{i t}^{F}$

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$
- $e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)$ forces $\theta_{j t}$ to be artificially autocorrelated
- Solution: allow for autocorrelation in $e_{i t}^{r}$
- (ii) Return Unsmoothing "Solution":
- Couts, Gonçalves, and Rossi (2020)
- Observed $r_{i t}^{F}$ is a Moving Average of true $r_{i t}^{F}$
- MA parameters assure $r_{i t}^{S}-r_{i t}^{F}$ is uncorrelated

3) Deal with Misalignment Between $r_{i t}^{S}$ and $r_{i t}^{F}$

$$
r_{i t+1}^{S}=r_{i t+1}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r} \quad \text { with } e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)
$$

- (i) Autocorrelation "Solution"
- Misalignment generates autocorrelation in observed $r_{i t}^{S}-r_{i t}^{F}$
- $e_{i t}^{r} \stackrel{i i d}{\sim} N(0,1)$ forces $\theta_{j t}$ to be artificially autocorrelated
- Solution: allow for autocorrelation in $e_{i t}^{r}$
- (ii) Return Unsmoothing "Solution":
- Couts, Gonçalves, and Rossi (2020)
- Observed $r_{i t}^{F}$ is a Moving Average of true $r_{i t}^{F}$
- MA parameters assure $r_{i t}^{S}-r_{i t}^{F}$ is uncorrelated
- Recover $r_{i t}^{F}$ and use $r_{i t+1}^{S}=r_{i t}^{F}+\varpi_{i t}^{-1 / 2} \cdot \sigma_{r} \cdot e_{i t+1}^{r}$

4) Miscellaneous Comments

4) Miscellaneous Comments

- $\gamma_{j t}$ and $a_{j t}$ are random walks, but look mean reverting

4) Miscellaneous Comments

- $\gamma_{j t}$ and $a_{j t}$ are random walks, but look mean reverting
- In section 5.5 (Equation 10), I suggest you also explore:

$$
d^{a}=\frac{1}{N} \sum_{i=1}^{N}\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(a)}\right|-\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(b)}\right|
$$

4) Miscellaneous Comments

- $\gamma_{j t}$ and $a_{j t}$ are random walks, but look mean reverting
- In section 5.5 (Equation 10), I suggest you also explore:

$$
d^{a}=\frac{1}{N} \sum_{i=1}^{N}\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(a)}\right|-\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(b)}\right|
$$

- Value premium decline (e.g., Gonçalves and Leonard (2021)):

4) Miscellaneous Comments

- $\gamma_{j t}$ and $a_{j t}$ are random walks, but look mean reverting
- In section 5.5 (Equation 10), I suggest you also explore:

$$
d^{a}=\frac{1}{N} \sum_{i=1}^{N}\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(a)}\right|-\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(b)}\right|
$$

- Value premium decline (e.g., Gonçalves and Leonard (2021)):
- The r_{t}^{F} value premium declines by 5.3%

4) Miscellaneous Comments

- $\gamma_{j t}$ and $a_{j t}$ are random walks, but look mean reverting
- In section 5.5 (Equation 10), I suggest you also explore:

$$
d^{a}=\frac{1}{N} \sum_{i=1}^{N}\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(a)}\right|-\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(b)}\right|
$$

- Value premium decline (e.g., Gonçalves and Leonard (2021)):
- The r_{t}^{F} value premium declines by 5.3%
- In line with the data (e.g., FF data implies 4.8\% decline)

4) Miscellaneous Comments

- $\gamma_{j t}$ and $a_{j t}$ are random walks, but look mean reverting
- In section 5.5 (Equation 10), I suggest you also explore:

$$
d^{a}=\frac{1}{N} \sum_{i=1}^{N}\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(a)}\right|-\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(b)}\right|
$$

- Value premium decline (e.g., Gonçalves and Leonard (2021)):
- The r_{t}^{F} value premium declines by 5.3%
- In line with the data (e.g., FF data implies 4.8% decline)
- But the r_{t}^{S} value premium declines by less than 1% in your data

4) Miscellaneous Comments

- $\gamma_{j t}$ and $a_{j t}$ are random walks, but look mean reverting
- In section 5.5 (Equation 10), I suggest you also explore:

$$
d^{a}=\frac{1}{N} \sum_{i=1}^{N}\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(a)}\right|-\left|\bar{r}_{i}^{S}-\bar{r}_{i}^{F(b)}\right|
$$

- Value premium decline (e.g., Gonçalves and Leonard (2021)):
- The r_{t}^{F} value premium declines by 5.3%
- In line with the data (e.g., FF data implies 4.8% decline)
- But the r_{t}^{S} value premium declines by less than 1% in your data
- Why so much lower than prior papers?

Outline

The Paper

My Comments

Final Remarks

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level
- Strong response to the criticism that the investment model needs different parameter estimates for different anomalies

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level
- Strong response to the criticism that the investment model needs different parameter estimates for different anomalies
- Provides a methodological foundation for future work

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level
- Strong response to the criticism that the investment model needs different parameter estimates for different anomalies
- Provides a methodological foundation for future work
- It would be useful to:

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level
- Strong response to the criticism that the investment model needs different parameter estimates for different anomalies
- Provides a methodological foundation for future work
- It would be useful to:
- Compare Bayesian and Frequentist methods

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level
- Strong response to the criticism that the investment model needs different parameter estimates for different anomalies
- Provides a methodological foundation for future work
- It would be useful to:
- Compare Bayesian and Frequentist methods
- Show that variation in $\gamma_{j t}$ and $a_{j t}$ is economically sensible

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level
- Strong response to the criticism that the investment model needs different parameter estimates for different anomalies
- Provides a methodological foundation for future work
- It would be useful to:
- Compare Bayesian and Frequentist methods
- Show that variation in $\gamma_{j t}$ and $a_{j t}$ is economically sensible
- Deal with misalignment between $r_{i t}^{S}$ and $r_{i t}^{F}$

Final Remarks

- First paper to estimate $r_{i t}^{S}=r_{i t}^{F}$ at the firm level
- Strong response to the criticism that the investment model needs different parameter estimates for different anomalies
- Provides a methodological foundation for future work
- It would be useful to:
- Compare Bayesian and Frequentist methods
- Show that variation in $\gamma_{j t}$ and $a_{j t}$ is economically sensible
- Deal with misalignment between $r_{i t}^{S}$ and $r_{i t}^{F}$
- Good luck!

