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E [R] from Firm's Perspective

e Firm's Net Present Value (NPV) Rule:

NPV = Inv OBenefit —  Tnv OCost
= CF(I)/(1+ WACC) — Cost(l)
0 = E[CF(M]/E[R] - Cost(I)
4
E[R] = E[CF (/)] / Cost (I*)

g-theory formalizes this logic and implies:
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Campbell (2017): The Empirical Challenge Matters

“This problem, that different
parameters are needed to fit each
anomaly, is a pervasive one in the
g-theoretic asset pricing literature
AT Courss TaiAsset Pricing (p. 275)”"

John Y. Campbell
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1) Compare Bayesian and Frequentist Methods

s F ~1/2 r . , iid
fieyl = ligp1 + @i ' - 0r - €ieg1 with e, ~ N(0,1)

r,.f = rF(Data; 0jt) and wj = Vit/zll'vil Vit

Paper explores the effect of j and t, but not of the Bayesian
framework

You can estimate ¢}, at each t and for each j (by NLS)

How much does the fit improve as you change from the
Frequentist (NLS) to the Bayesian (MCMC) framework?
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® (i) Variation in ~;;
o My =+ Ys (Gongalves, Xue, and Zhang (2020))
o Is variation in ; in line with variation in M;/Y}?
o Gross profits (Sales - COGS) provides a rough estimate for 1
e (ii) Variation in aj;
o (Vie+ Bity1)/Kie = Qe = (1 + aje - (1 — 7¢) - L/ Kie) + Wie/ Kie
o Is variation in aj; in line with variation in Q;?

o Is variation in aj; in line with the sensitivity of Q;; to /;;/Kj:?
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3) Deal with Misalignment Between r3 and rf

s F ~1/2 r . , iid
fieyl = ligp1 + @i ' - 0r - €ieg1 with e, ~ N(0,1)

Impossible to perfectly align r7 and rf

Not relevant for prior papers as they rely on (portfolio) E[r]
Very relevant for this paper

Overfitting: time-varying 0;; compensates for misalignment

This is why the specification with 0; performs better OOS
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S —1/2 r . ¢ iid
lity1 = :t+1 + W, *Or - €jty1 with ey ~ N(O: 1)

® (i) Autocorrelation “Solution”
o Misalignment generates autocorrelation in observed r

id e
o el X N(0, 1) forces ) to be artificially autocorrelated

o Solution: allow for autocorrelation in ef,

e (ii) Return Unsmoothing “Solution":

o Couts, Gongalves, and Rossi (2020)

o Observed rf is a Moving Average of true rf

o MA parameters assure ri; — r/; is uncorrelated
~1/2
o Recover rf and use r2,, = rf + @, 0, €,

I’

—r!
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4) Miscellaneous Comments

® 7+ and aj; are random walks, but look mean reverting

® In section 5.5 (Equation 10), | suggest you also explore:
1 N
a _ -+ =S _ SF(a)) _ |15 _ +F(b)
&= 5 I -HI = -
i=1

¢ Value premium decline (e.g., Gongalves and Leonard (2021)):
o The r/ value premium declines by 5.3%
o In line with the data (e.g., FF data implies 4.8% decline)
o But the r{ value premium declines by less than 1% in your data

o Why so much lower than prior papers?
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Final Remarks

First paper to estimate r; = rf at the firm level

Strong response to the criticism that the investment model
needs different parameter estimates for different anomalies

Provides a methodological foundation for future work

It would be useful to:
o Compare Bayesian and Frequentist methods
o Show that variation in 7j; and aj; is economically sensible
o Deal with misalignment between r; and rf

Good luck!
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