How Integrated are Corporate Bond and Stock Markets?

Mirela Sandulescu

Discussant: Andrei S. Gonçalves

2021 CICF

Outline

The Paper

My Comments

Final Remarks

The Paper in a Nutshell

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:

$$
\circ M_{E, t}=a_{E}+b_{E}^{\prime} R_{E, t} \text { and } M_{B, t}=a_{B}+b_{B}^{\prime} R_{B, t}
$$

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:
- $M_{E, t}=a_{E}+b_{E}^{\prime} R_{E, t}$ and $M_{B, t}=a_{B}+b_{B}^{\prime} R_{B, t}$
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]=1$ and $\mathbb{E}\left[M_{E} \cdot R_{B}\right]=1$

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:
- $M_{E, t}=a_{E}+b_{E}^{\prime} R_{E, t}$ and $M_{B, t}=a_{B}+b_{B}^{\prime} R_{B, t}$
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]=1$ and $\mathbb{E}\left[M_{E} \cdot R_{B}\right]=1$
- Insight: test for market Integration empirically with

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:
- $M_{E, t}=a_{E}+b_{E}^{\prime} R_{E, t}$ and $M_{B, t}=a_{B}+b_{B}^{\prime} R_{B, t}$
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]=1$ and $\mathbb{E}\left[M_{E} \cdot R_{B}\right]=1$
- Insight: test for market Integration empirically with
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\alpha_{E}$
- $\mathbb{E}\left[M_{E} \cdot R_{B}\right]-1=\alpha_{B}$

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:
- $M_{E, t}=a_{E}+b_{E}^{\prime} R_{E, t}$ and $M_{B, t}=a_{B}+b_{B}^{\prime} R_{B, t}$
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]=1$ and $\mathbb{E}\left[M_{E} \cdot R_{B}\right]=1$
- Insight: test for market Integration empirically with
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\alpha_{E}$
- $\mathbb{E}\left[M_{E} \cdot R_{B}\right]-1=\alpha_{B}$
- Frictions (e.g., proportional transaction costs):

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:
- $M_{E, t}=a_{E}+b_{E}^{\prime} R_{E, t}$ and $M_{B, t}=a_{B}+b_{B}^{\prime} R_{B, t}$
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]=1$ and $\mathbb{E}\left[M_{E} \cdot R_{B}\right]=1$
- Insight: test for market Integration empirically with
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\alpha_{E}$
- $\mathbb{E}\left[M_{E} \cdot R_{B}\right]-1=\alpha_{B}$
- Frictions (e.g., proportional transaction costs):
- Induce SDF parameters with LASSO constraint

The Paper in a Nutshell

- No-arbitrage $\Rightarrow \mathbb{E}\left[M_{t} \cdot R_{t}\right]=1$ with $M_{t}=a+b^{\prime} R_{t}$
- Market integration implies:
- $M_{E, t}=a_{E}+b_{E}^{\prime} R_{E, t}$ and $M_{B, t}=a_{B}+b_{B}^{\prime} R_{B, t}$
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]=1$ and $\mathbb{E}\left[M_{E} \cdot R_{B}\right]=1$
- Insight: test for market Integration empirically with
- $\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\alpha_{E}$
- $\mathbb{E}\left[M_{E} \cdot R_{B}\right]-1=\alpha_{B}$
- Frictions (e.g., proportional transaction costs):
- Induce SDF parameters with LASSO constraint
- $\widetilde{M}_{E, t}=\widetilde{a}_{E}+\widetilde{b}_{E}^{\prime} R_{E, t}$ and $\widetilde{M}_{B, t}=\widetilde{a}_{B}+\widetilde{b}_{B}^{\prime} R_{B, t}$

Cross-Market Pricing Errors (in Monthly BPS)

Cross-Market Pricing Errors (in Monthly BPS)

Without Frictions

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	9	16	-14	-8	25	-9	10	4	13	18
	(0.042)	(0.051)	(-0.063)	(-0.027)	(0.087)	(-0.059)	(0.051)	(0.023)	(0.028)	(0.046)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-40	-55	-30	-51	-71	-73	-26	-56	-27	-55
	(-0.409)	(-0.854)	(-0.181)	(-0.287)	(-0.253)	(-0.406)	(-0.215)	(-0.319)	(-0.204)	(-0.170)

Cross-Market Pricing Errors (in Monthly BPS)

Without Frictions

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	9	16	-14	-8	25	-9	10	4	13	18
	(0.042)	(0.051)	(-0.063)	(-0.027)	(0.087)	(-0.059)	(0.051)	(0.023)	(0.028)	(0.046)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-40	-55	-30	-51	-71	-73	-26	-56	-27	-55
	(-0.409)	(-0.854)	(-0.181)	(-0.287)	(-0.253)	(-0.406)	(-0.215)	(-0.319)	(-0.204)	(-0.170)

With Frictions

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	17	31	21	9	9	15	13	9	17	11
	(0.430)	(0.835)	(0.534)	(0.197)	(0.099)	(0.270)	(0.350)	(0.209)	(0.427)	(0.216)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-53	-68	-47	-42	-46	-64	-51	-51	-52	-40
	(-1.451)	(-1.527)	(-1.370)	(-0.851)	(-0.981)	(-1.221)	(-1.382)	(-1.214)	(-1.486)	(-0.547)

Cross-Market Pricing Errors (in Monthly BPS)

Without Frictions

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	9	16	-14	-8	25	-9	10	4	13	18
	(0.042)	(0.051)	(-0.063)	(-0.027)	(0.087)	(-0.059)	(0.051)	(0.023)	(0.028)	(0.046)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-40	-55	-30	-51	-71	-73	-26	-56	-27	-55
	(-0.409)	(-0.854)	(-0.181)	(-0.287)	(-0.253)	(-0.406)	(-0.215)	(-0.319)	(-0.204)	(-0.170)

With Frictions

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	17	31	21	9	9	15	13	9	17	11
	(0.430)	(0.835)	(0.534)	(0.197)	(0.099)	(0.270)	(0.350)	(0.209)	(0.427)	(0.216)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-53	-68	-47	-42	-46	-64	-51	-51	-52	-40
	(-1.451)	(-1.527)	(-1.370)	(-0.851)	(-0.981)	(-1.221)	(-1.382)	(-1.214)	(-1.486)	(-0.547)

- Pricing errors are comparable with typical trading costs

Cross-Market Pricing Errors (in Monthly BPS)

Without Frictions

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	9	16	-14	-8	25	-9	10	4	13	18
	(0.042)	(0.051)	(-0.063)	(-0.027)	(0.087)	(-0.059)	(0.051)	(0.023)	(0.028)	(0.046)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-40	-55	-30	-51	-71	-73	-26	-56	-27	-55
	(-0.409)	(-0.854)	(-0.181)	(-0.287)	(-0.253)	(-0.406)	(-0.215)	(-0.319)	(-0.204)	(-0.170)

With Frictions

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	17	31	21	9	9	15	13	9	17	11
	$(0.430$	(0.835)	(0.534)	(0.197)	(0.099)	(0.270)	(0.350)	(0.209)	(0.427)	(0.216)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-53	-68	-47	-42	-46	-64	-51	-51	-52	-40
	(-1.451)	(-1.527)	(-1.370)	(-0.851)	(-0.981)	(-1.221)	(-1.382)	(-1.214)	(-1.486)	(-0.547)

- Pricing errors are comparable with typical trading costs
- Conclusion:
"This evidence supports the idea that the stock and bond of the same issuer are integrated, and compatible with a notion of no-arbitrage with transaction costs."

Outline

The Paper

My Comments

Final Remarks

1) Segmentation vs Trading Costs

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\alpha_{E}=\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1
$$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\alpha_{E}=\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1
$$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\alpha_{E}=\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1
$$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1
\end{aligned}
$$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1=38 \mathrm{BPS}
\end{aligned}
$$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1=38 \mathrm{BPS} \\
\alpha_{B} & \approx \frac{1.00557}{1.00939}-1
\end{aligned}
$$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1=38 \mathrm{BPS} \\
\alpha_{B} & \approx \frac{1.00557}{1.00939}-1=-38 \mathrm{BPS}
\end{aligned}
$$

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1=38 \mathrm{BPS} \\
\alpha_{B} & \approx \frac{1.00557}{1.00939}-1=-38 \mathrm{BPS}
\end{aligned}
$$

	Credit Rating	Duration	Size	Value	Leverage	Momentum	Asset Growth	Profitability	Liquidity	Short Interest
$\mathbb{E}\left[M_{B} R_{S}\right]-1$	17	31	21	9	9	15	13	9	17	11
	(0.430)	(0.835)	(0.534)	(0.197)	(0.099)	(0.270)	(0.350)	(0.209)	(0.427)	(0.216)
$\mathbb{E}\left[M_{S} R_{B}\right]-1$	-53	-68	-47	-42	-46	-64	-51	-51	-52	-40
	(-1.451)	(-1.527)	(-1.370)	(-0.851)	(-0.981)	(-1.221)	(-1.382)	(-1.214)	(-1.486)	(-0.547)

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1=38 \mathrm{BPS} \\
\alpha_{B} & \approx \frac{1.00557}{1.00939}-1=-38 \mathrm{BPS}
\end{aligned}
$$

- Identification Challenge: Segmentation vs Trading Costs

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1=38 \mathrm{BPS} \\
\alpha_{B} & \approx \frac{1.00557}{1.00939}-1=-38 \mathrm{BPS}
\end{aligned}
$$

- Identification Challenge: Segmentation vs Trading Costs
- Intuition: segmentation α is comparable to $\mathbb{E}\left[R_{E}\right]-\mathbb{E}\left[R_{B}\right]$ spread, which is not much different from typical trading cost

1) Segmentation vs Trading Costs

- Extreme Segmentation (with log utility):
- One Equity Investor: $M_{E, t}=1 / R_{E, t}$
- One Bond Investor: $M_{B, t}=1 / R_{B, t}$
- Assume $R_{E, t} \perp R_{B, t}$
- Then:

$$
\begin{aligned}
\alpha_{E} & =\mathbb{E}\left[M_{B} \cdot R_{E}\right]-1=\mathbb{E}\left[M_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1=\mathbb{E}\left[1 / R_{B}\right] \cdot \mathbb{E}\left[R_{E}\right]-1 \\
& \approx \frac{1.00939}{1.00557}-1=38 \mathrm{BPS} \\
\alpha_{B} & \approx \frac{1.00557}{1.00939}-1=-38 \mathrm{BPS}
\end{aligned}
$$

- Identification Challenge: Segmentation vs Trading Costs
- Intuition: segmentation α is comparable to $\mathbb{E}\left[R_{E}\right]-\mathbb{E}\left[R_{B}\right]$ spread, which is not much different from typical trading cost
- Solution: simulation with segmentation + trading costs?

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied
- This will reduce trading costs

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied
- This will reduce trading costs
- Will the cross-market α s reduce accordingly?

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied
- This will reduce trading costs
- Will the cross-market α s reduce accordingly?
- Cross-section of strategy turnover

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied
- This will reduce trading costs
- Will the cross-market α s reduce accordingly?
- Cross-section of strategy turnover
- Calculate strategy turnover

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied
- This will reduce trading costs
- Will the cross-market α s reduce accordingly?
- Cross-section of strategy turnover
- Calculate strategy turnover
- Low turnover strategies have lower trading costs

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied
- This will reduce trading costs
- Will the cross-market α s reduce accordingly?
- Cross-section of strategy turnover
- Calculate strategy turnover
- Low turnover strategies have lower trading costs
- Example: Equity Duration (Gonçalves (2021))

2) Exploring Trading Costs

- Identification Challenge: Segmentation vs Trading Costs
- Issue: trading anomalies is costly
- Cost mitigating strategies
- Novy-Marx and Velikov $(2016,2019)$
- Only change portfolios after some rules are satisfied
- This will reduce trading costs
- Will the cross-market α s reduce accordingly?
- Cross-section of strategy turnover
- Calculate strategy turnover
- Low turnover strategies have lower trading costs
- Example: Equity Duration (Gonçalves (2021))
- Do cross-market α s vary with strategy turnover?

Miscellaneous Comments

- Link to Intermediary-based Asset Pricing
- Constrained SDFs reflect their respective overall markets (Figure 6)
- So, link between SDFs and intermediary capital risk factor is hard to interpret
- I would drop that part of the analysis
- With weak factors (Giglio, Xiu, and Zhang (2021)), results can suggest segmentation when none is present (risk factors just differ across asset classes). Does not matter for your findings, but makes it hard to generalize the method.
- Small notation issue: $M_{t}=a+b^{\prime} R_{t}$ can only be written as $M_{t}=\omega^{\prime} R_{t}$ if you include in R_{t} a risk-free payoff

Outline

The Paper

My Comments

Final Remarks

Final Remarks

- Very interesting paper that helps us better understand the integration between stock and bond markets

Final Remarks

- Very interesting paper that helps us better understand the integration between stock and bond markets
- It would be useful to:

Final Remarks

- Very interesting paper that helps us better understand the integration between stock and bond markets
- It would be useful to:
- Better identify whether α s originate from segmentation or trading costs (maybe both?)

Final Remarks

- Very interesting paper that helps us better understand the integration between stock and bond markets
- It would be useful to:
- Better identify whether α s originate from segmentation or trading costs (maybe both?)
- Relatedly, explore how α sary with trading costs

Final Remarks

- Very interesting paper that helps us better understand the integration between stock and bond markets
- It would be useful to:
- Better identify whether α s originate from segmentation or trading costs (maybe both?)
- Relatedly, explore how α sary with trading costs
- Good luck!

