Duration-Based Stock Valuation:
Reassessing Stock Market Performance and Volatility

Jules H. van Binsbergen

Discussant: Andrei S. Gonçalves

2021 EFA

Outline

The Paper

My Comments

Final Remarks

The Paper's Message

The Paper's Message

- Two stylized facts in Asset Pricing:

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$
- This paper: long duration of equities drives such stylized facts

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$
- This paper: long duration of equities drives such stylized facts
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$
- This paper: long duration of equities drives such stylized facts
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0($ or even $<0)$

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$
- This paper: long duration of equities drives such stylized facts
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0($ or even $<0)$
- Important implications:

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$
- This paper: long duration of equities drives such stylized facts
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0($ or even $<0)$
- Important implications:
- Asset Pricing models

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$
- This paper: long duration of equities drives such stylized facts
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0($ or even $<0)$
- Important implications:
- Asset Pricing models
- Long-term Investing

The Paper's Message

- Two stylized facts in Asset Pricing:
- Large equity premium $\Rightarrow \mathbb{E}\left[R_{e}-R_{f}\right] \in[4 \%, 8 \%]$
- Excess volatility $\Rightarrow \sigma\left[R_{e}\right] \in[15 \%, 20 \%]$
- This paper: long duration of equities drives such stylized facts
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0($ or even $<0)$
- Important implications:
- Asset Pricing models
- Long-term Investing
- Corporate Finance

The Paper's Empirical Results

The Paper's Empirical Results

 $\mathbb{E}[R]$

The Paper's Empirical Results

$\mathbb{E}[R]$

$\sigma[R]$

The Paper's Empirical Results

 $\mathbb{E}[R]$$\sigma[R]$

$$
R_{b}=\sum_{n=1}^{\infty} w_{n} \cdot R_{b}^{(n)}
$$

The Paper's Empirical Results

 $\mathbb{E}[R]$$\sigma[R]$

$$
R_{b}=\sum_{n=1}^{\infty} w_{n} \cdot R_{b}^{(n)}=\sum_{n=1}^{N} \widehat{w}_{n} \cdot \widehat{R}_{b}^{(n)}
$$

The Paper's Empirical Results
 $\sigma[R]$

 $\mathbb{E}[R]$

$$
R_{b}=\sum_{n=1}^{\infty} w_{n} \cdot R_{b}^{(n)}=\sum_{n=1}^{N} \widehat{w}_{n} \cdot \widehat{R}_{b}^{(n)}
$$

	$1996-2021$				$1970-2021$			
N	30	40	30	40	30	40	30	40
Dividend Yield	3%	3%	2%	2%	3%	3%	2%	2%
Duration	19.9	23.4	22.6	27.6	19.9	23.4	22.6	27.6
$\mathbb{E}\left[R_{e}-R_{b}\right]$	1.4%	-0.3%	0.7%	-1.7%	-0.9%	-8.0%	-2.1%	-12.1%
$\sigma\left[R_{e}\right]-\sigma\left[R_{b}\right]$	-0.0%	-1.1%	-0.6%	-2.4%	-2.7%	-6.7%	-4.3%	$-10.7 \%_{2}$

Outline

The Paper

My Comments

Final Remarks

1) The Low (Duration-Matched) Equity Premium

- The main result $\left(\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0\right)$ is robust and important

1) The Low (Duration-Matched) Equity Premium

- The main result $\left(\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0\right)$ is robust and important
- Also holds with completely different empirical methods:

1) The Low (Duration-Matched) Equity Premium

- The main result $\left(\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0\right)$ is robust and important
- Also holds with completely different empirical methods:
- Andrews and Gonçalves (2021)

1) The Low (Duration-Matched) Equity Premium

- The main result $\left(\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0\right)$ is robust and important
- Also holds with completely different empirical methods:
- Andrews and Gonçalves (2021)
- No-arbitrage model to price portfolios sorted on duration

1) The Low (Duration-Matched) Equity Premium

- The main result $\left(\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0\right)$ is robust and important
- Also holds with completely different empirical methods:
- Andrews and Gonçalves (2021)
- No-arbitrage model to price portfolios sorted on duration
- Explore the Bond, Equity, and Real Estate term structures

1) The Low (Duration-Matched) Equity Premium

- The main result $\left(\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0\right)$ is robust and important
- Also holds with completely different empirical methods:
- Andrews and Gonçalves (2021)
- No-arbitrage model to price portfolios sorted on duration
- Explore the Bond, Equity, and Real Estate term structures
(a) $y_{b}^{(5)}$

(b) $y_{e}^{(1)}$

1) The Low (Duration-Matched) Equity Premium

- The main result $\left(\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0\right)$ is robust and important
- Also holds with completely different empirical methods:
- Andrews and Gonçalves (2021)
- No-arbitrage model to price portfolios sorted on duration
- Explore the Bond, Equity, and Real Estate term structures

2) Formalizing the Potential Explanations

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\tilde{r}_{d, t}^{(n)}=+N_{\Delta d, t}^{(n-1)}-N_{r d, t}^{(n-1)}
$$

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\tilde{r}_{d, t}^{(n)}=+N_{\Delta d, t}^{(n-1)}-N_{r d, t}^{(n-1)}
$$

○ $N_{\Delta d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta d_{t+j}\right]$ is dividend growth news

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\tilde{r}_{d, t}^{(n)}=\quad+\mathbb{N}_{\Delta d, t}^{(n-1)}-\mathbb{N}_{r d, t}^{(n-1)}
$$

- $N_{\Delta d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta d_{t+j}\right]$ is dividend growth news
- $N_{r d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{d, t+j}^{(n-j+1)}\right]$ is dividend expected return news

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\widetilde{r}_{d, t}^{(n)}=+N_{\Delta d, t}^{(n-1)}-N_{r d, t}^{(n-1)}
$$

- $N_{\Delta d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta d_{t+j}\right]$ is dividend growth news
- $N_{r d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{d, t+j}^{(n-j+1)}\right]$ is dividend expected return news
- Similarly, we have (derivations in slide appendix):

$$
\widetilde{r}_{b, t}^{(n)}=-N_{\Delta \pi, t}^{(n-1)}-N_{r b, t}^{(n-1)}
$$

- $N_{\Delta \pi, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta \pi_{t+j}\right]$ is inflation news
- $N_{r b, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{b, t+j}^{(n-j+1)}\right]$ is bond expected return news

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\widetilde{r}_{d, t}^{(n)}=+N_{\Delta d, t}^{(n-1)}-N_{r d, t}^{(n-1)}
$$

- $N_{\Delta d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta d_{t+j}\right]$ is dividend growth news
- $N_{r d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{d, t+j}^{(n-j+1)}\right]$ is dividend expected return news
- Similarly, we have (derivations in slide appendix):

$$
\widetilde{r}_{b, t}^{(n)}=-N_{\Delta \pi, t}^{(n-1)}-N_{r b, t}^{(n-1)}
$$

- $N_{\Delta \pi, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta \pi_{t+j}\right]$ is inflation news
- $N_{r b, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{b, t+j}^{(n-j+1)}\right]$ is bond expected return news
- Hence:

$$
R_{e, t}=\mathbb{E}_{t-1}\left[R_{e, t}\right]+\sum_{n=1}^{\infty} w_{n} \cdot \widetilde{R}_{d, t}^{(n)}
$$

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\widetilde{r}_{d, t}^{(n)}=+N_{\Delta d, t}^{(n-1)}-N_{r d, t}^{(n-1)}
$$

- $N_{\Delta d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta d_{t+j}\right]$ is dividend growth news
- $N_{r d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{d, t+j}^{(n-j+1)}\right]$ is dividend expected return news
- Similarly, we have (derivations in slide appendix):

$$
\widetilde{r}_{b, t}^{(n)}=-N_{\Delta \pi, t}^{(n-1)}-N_{r b, t}^{(n-1)}
$$

- $N_{\Delta \pi, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta \pi_{t+j}\right]$ is inflation news
- $N_{r b, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{b, t+j}^{(n-j+1)}\right]$ is bond expected return news
- Hence:

$$
R_{e, t}=\mathbb{E}_{t-1}\left[R_{e, t}\right]+\sum_{n=1}^{\infty} w_{n} \cdot \widetilde{R}_{d, t}^{(n)} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t}
$$

- where $N_{x, t}^{(h)}=\sum_{n=1}^{\infty} w_{n} \cdot N_{x, t}^{(n-1)}$

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\widetilde{r}_{d, t}^{(n)}=+N_{\Delta d, t}^{(n-1)}-N_{r d, t}^{(n-1)}
$$

- $N_{\Delta d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta d_{t+j}\right]$ is dividend growth news
- $N_{r d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{d, t+j}^{(n-j+1)}\right]$ is dividend expected return news
- Similarly, we have (derivations in slide appendix):

$$
\widetilde{r}_{b, t}^{(n)}=-N_{\Delta \pi, t}^{(n-1)}-N_{r b, t}^{(n-1)}
$$

- $N_{\Delta \pi, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta \pi_{t+j}\right]$ is inflation news
- $N_{r b, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{b, t+j}^{(n-j+1)}\right]$ is bond expected return news
- Hence:

$$
\begin{aligned}
& R_{e, t}=\mathbb{E}_{t-1}\left[R_{e, t}\right]+\sum_{n=1}^{\infty} w_{n} \cdot \widetilde{R}_{d, t}^{(n)} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t}=\mathbb{E}_{t-1}\left[R_{b, t}\right]+\sum_{n=1}^{\infty} w_{n} \cdot \widetilde{R}_{b, t}^{(n)} \\
& \circ \text { where } N_{x, t}^{(h)}=\sum_{n=1}^{\infty} w_{n} \cdot N_{x, t}^{(n-1)}
\end{aligned}
$$

2) Formalizing the Potential Explanations

- From Gonçalves (2021), we have (with $\widetilde{x}_{t} \equiv x_{t}-\mathbb{E}_{t-1}\left[x_{t}\right]$):

$$
\widetilde{r}_{d, t}^{(n)}=+N_{\Delta d, t}^{(n-1)}-N_{r d, t}^{(n-1)}
$$

- $N_{\Delta d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta d_{t+j}\right]$ is dividend growth news
- $N_{r d, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{d, t+j}^{(n-j+1)}\right]$ is dividend expected return news
- Similarly, we have (derivations in slide appendix):

$$
\widetilde{r}_{b, t}^{(n)}=-N_{\Delta \pi, t}^{(n-1)}-N_{r b, t}^{(n-1)}
$$

- $N_{\Delta \pi, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=0}^{n} \Delta \pi_{t+j}\right]$ is inflation news
- $N_{r b, t}^{(n)}=\mathbb{E}_{t}-\mathbb{E}_{t-1}\left[\sum_{j=1}^{n} r_{b, t+j}^{(n-j+1)}\right]$ is bond expected return news
- Hence:

$$
\begin{aligned}
& R_{e, t}=\mathbb{E}_{t-1}\left[R_{e, t}\right]+\sum_{n=1}^{\infty} w_{n} \cdot \widetilde{R}_{d, t}^{(n)} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t}=\mathbb{E}_{t-1}\left[R_{b, t}\right]+\sum_{n=1}^{\infty} w_{n} \cdot \widetilde{R}_{b, t}^{(n)} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t} \\
& \circ \text { where } N_{x, t}^{(h)}=\sum_{n=1}^{\infty} w_{n} \cdot N_{x, t}^{(n-1)}
\end{aligned}
$$

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

- The quantity estimated in the paper is:

$$
\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right]=\frac{1}{T} \cdot \Sigma_{t=1}^{T}\left(R_{e, t}-R_{b, t}\right)
$$

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

- The quantity estimated in the paper is:

$$
\begin{aligned}
\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] & =\frac{1}{T} \cdot \Sigma_{t=1}^{T}\left(R_{e, t}-R_{b, t}\right) \\
& \approx \mathbb{E}\left[R_{e}-R_{b}\right]+\frac{\Sigma_{t=1}^{T} N_{\Delta d, t}}{T}+\frac{\Sigma_{t=1}^{T} N_{\Delta \pi, t}}{T}-\frac{\Sigma_{t=1}^{T}\left(N_{r d, t}-N_{r b, t}\right)}{T}
\end{aligned}
$$

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

- The quantity estimated in the paper is:

$$
\begin{aligned}
\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] & =\frac{1}{T} \cdot \Sigma_{t=1}^{T}\left(R_{e, t}-R_{b, t}\right) \\
& \approx \mathbb{E}\left[R_{e}-R_{b}\right]+\frac{\Sigma_{t=1}^{T} N_{\Delta d, t}}{T}+\frac{\Sigma_{t=1}^{T} N_{\Delta \pi, t}}{T}-\frac{\Sigma_{t=1}^{T}\left(N_{r d, t}-N_{r b, t}\right)}{T}
\end{aligned}
$$

- The four potential explanations:

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

- The quantity estimated in the paper is:

$$
\begin{aligned}
\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] & =\frac{1}{T} \cdot \Sigma_{t=1}^{T}\left(R_{e, t}-R_{b, t}\right) \\
& \approx \mathbb{E}\left[R_{e}-R_{b}\right]+\frac{\Sigma_{t=1}^{T} N_{\Delta d, t}}{T}+\frac{\Sigma_{t=1}^{T} N_{\Delta \pi, t}}{T}-\frac{\Sigma_{t=1}^{T}\left(N_{r d, t}-N_{r b, t}\right)}{T}
\end{aligned}
$$

- The four potential explanations:

1) Investors priced in a $\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0$

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

- The quantity estimated in the paper is:

$$
\begin{aligned}
\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] & =\frac{1}{T} \cdot \Sigma_{t=1}^{T}\left(R_{e, t}-R_{b, t}\right) \\
& \approx \mathbb{E}\left[R_{e}-R_{b}\right]+\frac{\Sigma_{t=1}^{T} N_{\Delta d, t}}{T}+\frac{\Sigma_{t=1}^{T} N_{\Delta \pi, t}}{T}-\frac{\Sigma_{t=1}^{T}\left(N_{r d, t}-N_{r b, t}\right)}{T}
\end{aligned}
$$

- The four potential explanations:

1) Investors priced in a $\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0$
2) Unexpected decrease in growth: $\Sigma_{t=1}^{T} N_{\Delta d, t}<0$

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

- The quantity estimated in the paper is:

$$
\begin{aligned}
\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] & =\frac{1}{T} \cdot \Sigma_{t=1}^{T}\left(R_{e, t}-R_{b, t}\right) \\
& \approx \mathbb{E}\left[R_{e}-R_{b}\right]+\frac{\Sigma_{t=1}^{T} N_{\Delta d, t}}{T}+\frac{\Sigma_{t=1}^{T} N_{\Delta \pi, t}}{T}-\frac{\Sigma_{t=1}^{T}\left(N_{r d, t}-N_{r b, t}\right)}{T}
\end{aligned}
$$

- The four potential explanations:

1) Investors priced in a $\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0$
2) Unexpected decrease in growth: $\Sigma_{t=1}^{T} N_{\Delta d, t}<0$
3) Unexpected decrease in inflation: $\Sigma_{t=1}^{T} N_{\Delta \pi, t}<0$

2) Formalizing the Potential Explanations

$$
\begin{aligned}
& R_{e, t} \approx \mathbb{E}_{t-1}\left[R_{e, t}\right]+N_{\Delta d, t}-N_{r d, t} \\
& R_{b, t} \approx \mathbb{E}_{t-1}\left[R_{b, t}\right]-N_{\Delta \pi, t}-N_{r b, t}
\end{aligned}
$$

- The quantity estimated in the paper is:

$$
\begin{aligned}
\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] & =\frac{1}{T} \cdot \Sigma_{t=1}^{T}\left(R_{e, t}-R_{b, t}\right) \\
& \approx \mathbb{E}\left[R_{e}-R_{b}\right]+\frac{\Sigma_{t=1}^{T} N_{\Delta d, t}}{T}+\frac{\Sigma_{t=1}^{T} N_{\Delta \pi, t}}{T}-\frac{\Sigma_{t=1}^{T}\left(N_{r d, t}-N_{r b, t}\right)}{T}
\end{aligned}
$$

- The four potential explanations:

1) Investors priced in a $\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0$
2) Unexpected decrease in growth: $\Sigma_{t=1}^{T} N_{\Delta d, t}<0$
3) Unexpected decrease in inflation: $\Sigma_{t=1}^{T} N_{\Delta \pi, t}<0$
4) Unexpected increase in div risk premia: $\Sigma_{t=1}^{T}\left(N_{r d, t}-N_{r b, t}\right)>0$
5) Implications to Asset Pricing Models

3) Implications to Asset Pricing Models

- We generally have (with $\mathbb{E}_{t}[M]=1$ for simplicity):

$$
\mathbb{E}_{t}\left[R_{e}-R_{f}\right]=\operatorname{Cov}_{t}\left[-M, \widetilde{R}_{e}\right]
$$

3) Implications to Asset Pricing Models

- We generally have (with $\mathbb{E}_{t}[M]=1$ for simplicity):

$$
\begin{aligned}
\mathbb{E}_{t}\left[R_{e}-R_{f}\right] & =\operatorname{Cov}_{t}\left[-M, \widetilde{R}_{e}\right] \\
& \approx \operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M, N_{r d}\right]
\end{aligned}
$$

3) Implications to Asset Pricing Models

- We generally have (with $\mathbb{E}_{t}[M]=1$ for simplicity):

$$
\begin{aligned}
\mathbb{E}_{t}\left[R_{e}-R_{f}\right] & =\operatorname{Cov}_{t}\left[-M, \widetilde{R}_{e}\right] \\
& \approx \operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M, N_{r d}\right] \\
& =\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M,\left(N_{r d}-N_{r b}\right)\right]+\operatorname{Cov}_{t}\left[M, N_{r b}\right]
\end{aligned}
$$

3) Implications to Asset Pricing Models

- We generally have (with $\mathbb{E}_{t}[M]=1$ for simplicity):

$$
\begin{aligned}
\mathbb{E}_{t}\left[R_{e}-R_{f}\right] & =\operatorname{Cov}_{t}\left[-M, \widetilde{R}_{e}\right] \\
& \approx \operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M, N_{r d}\right] \\
& =\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M,\left(N_{r d}-N_{r b}\right)\right]+\operatorname{Cov}_{t}\left[M, N_{r b}\right]
\end{aligned}
$$

- Prior asset pricing models generate high $\mathbb{E}\left[R_{e}-R_{f}\right]$ through:

3) Implications to Asset Pricing Models

- We generally have (with $\mathbb{E}_{t}[M]=1$ for simplicity):

$$
\begin{aligned}
\mathbb{E}_{t}\left[R_{e}-R_{f}\right] & =\operatorname{Cov}_{t}\left[-M, \widetilde{R}_{e}\right] \\
& \approx \operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M, N_{r d}\right] \\
& =\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M,\left(N_{r d}-N_{r b}\right)\right]+\operatorname{Cov}_{t}\left[M, N_{r b}\right]
\end{aligned}
$$

- Prior asset pricing models generate high $\mathbb{E}\left[R_{e}-R_{f}\right]$ through:
- $\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]$ (e.g., long-run risks model)

3) Implications to Asset Pricing Models

- We generally have (with $\mathbb{E}_{t}[M]=1$ for simplicity):

$$
\begin{aligned}
\mathbb{E}_{t}\left[R_{e}-R_{f}\right] & =\operatorname{Cov}_{t}\left[-M, \widetilde{R}_{e}\right] \\
& \approx \operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M, N_{r d}\right] \\
& =\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M,\left(N_{r d}-N_{r b}\right)\right]+\operatorname{Cov}_{t}\left[M, N_{r b}\right]
\end{aligned}
$$

- Prior asset pricing models generate high $\mathbb{E}\left[R_{e}-R_{f}\right]$ through:
- $\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]$ (e.g., long-run risks model)
- $\operatorname{Cov}_{t}\left[M,\left(N_{r d}-N_{r b}\right)\right]$ (e.g., habit formation)

3) Implications to Asset Pricing Models

- We generally have (with $\mathbb{E}_{t}[M]=1$ for simplicity):

$$
\begin{aligned}
\mathbb{E}_{t}\left[R_{e}-R_{f}\right] & =\operatorname{Cov}_{t}\left[-M, \widetilde{R}_{e}\right] \\
& \approx \operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M, N_{r d}\right] \\
& =\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]+\operatorname{Cov}_{t}\left[M,\left(N_{r d}-N_{r b}\right)\right]+\operatorname{Cov}_{t}\left[M, N_{r b}\right]
\end{aligned}
$$

- Prior asset pricing models generate high $\mathbb{E}\left[R_{e}-R_{f}\right]$ through:
- $\operatorname{Cov}_{t}\left[-M, N_{\Delta d}\right]$ (e.g., long-run risks model)
- $\operatorname{Cov}_{t}\left[M,\left(N_{r d}-N_{r b}\right)\right]$ (e.g., habit formation)
- However, if $\mathbb{E}\left[R_{e}-R_{b}\right] \leq 0$ holds:
- $\operatorname{Cov}_{t}\left[M, N_{r b}\right]$ drives equity premium

Outline

The Paper

My Comments

Final Remarks

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0$ (or even <0)

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0 \quad($ or even $<0)$

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0 \quad($ or even $<0)$
- It would be useful to:

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0 \quad($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0 \quad($ or even $<0)$
- It would be useful to:
- Formalize the potential explanations for the empirical results

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0 \quad($ or even $<0)$
- It would be useful to:
- Formalize the potential explanations for the empirical results
- Dig deeper into the implications to asset pricing models

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
- $\widehat{\mathbb{E}}\left[R_{e}-R_{b}\right] \approx 0 \quad($ or even $<0)$
- $\widehat{\sigma}\left[R_{e}\right]-\widehat{\sigma}\left[R_{b}\right] \approx 0 \quad($ or even $<0)$
- It would be useful to:
- Formalize the potential explanations for the empirical results
- Dig deeper into the implications to asset pricing models
- Good luck!

Return Components (Derivation)

- $\$ R_{t+1}^{(n)}=P_{t+1}^{(n-1)} / P_{t}^{(n)}$
(where $P_{t}^{(0)}=C F_{t}$ is the asset nominal cash flow)
- $\$ r_{t+1}^{(n)}=p_{t+1}^{(n-1)}-p_{t}^{(n)}=p c f_{t+1}^{(n-1)}-p c f_{t}^{(n)}+\Delta c f_{t+1}$ $\left(\right.$ where $\left.p c f_{t}=\log \left(P_{t} / C F_{t}\right)\right)$
- $r_{t+1}^{(n)}=\$ r_{t+1}^{(n)}-\Delta \pi_{t+1}=p c f_{t+1}^{(n-1)}-p c f_{t}^{(n)}+\Delta c f_{t+1}-\Delta \pi_{t+1}$
(where $\Delta \pi_{t}=\log \left(\Pi_{t+1} / \Pi_{t}\right)$ is the growth in an inflation index)
- Iterating $p c f_{t}^{(n)}$ forward and using $\widetilde{r}_{t}^{(n)}=\widetilde{p c f_{t}^{(n-1)}}+\widetilde{\Delta c f_{t}}-\widetilde{\Delta \pi_{t}}$:

$$
\widetilde{r}_{t}^{(n)}=\left(\mathbb{E}_{t}-\mathbb{E}_{t-1}\right)\left[\Sigma_{j=0}^{n-1} \Delta c f_{t+j}-\Delta \pi_{t+j}\right]-\left(\mathbb{E}_{t}-\mathbb{E}_{t-1}\right)\left[\sum_{j=0}^{n-1} r_{t+j}^{(n-j)}\right]
$$

- Dividend strips: $\Delta c f_{t+1}=\log \left(D_{t+1}^{\$} / D_{t}^{\$}\right)=\Delta d_{t+1}+\Delta \pi_{t+1}$
- Nominal Bond strips: $\Delta c f_{t+1}=\log (1 / 1)=0$
- Real Bond strips: $\Delta c f_{t+1}=\log \left(\Pi_{t+1} / \Pi_{t}\right)=\Delta \pi_{t+1}$

