

Duration-Based Stock Valuation: Reassessing Stock Market Performance and Volatility

Jules H. van Binsbergen

Discussant: Andrei S. Gonçalves

2021 EFA

Outline

The Paper

My Comments

• Two stylized facts in Asset Pricing:

• This paper: long duration of equities drives such stylized facts

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$

• This paper: long duration of equities drives such stylized facts

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts
 - $\circ \ \widehat{\mathbb{E}}[R_e R_b] pprox 0$ (or even < 0)
 - $\circ \ \widehat{\sigma}[R_e] \widehat{\sigma}[R_b] pprox 0$ (or even < 0)
- Important implications:

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts
 - $\widehat{\mathbb{E}}[R_e R_b] \approx 0$ (or even < 0)

 $\circ \ \widehat{\sigma}[R_e] - \widehat{\sigma}[R_b] pprox 0$ (or even < 0)

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts
 - $\circ \ \widehat{\mathbb{E}}[\underline{\textit{R}_{e}}-\underline{\textit{R}_{b}}]\approx 0 \ \ (\text{or even} < 0)$
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- Important implications:

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts
 - $\circ \ \widehat{\mathbb{E}}[\underline{\textit{R}_{e}}-\underline{\textit{R}_{b}}]\approx 0 \ \ (\text{or even} < 0)$
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- Important implications:
 - Asset Pricing models
 - Long-term Investing
 - Corporate Finance

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts
 - $\widehat{\mathbb{E}}[R_e R_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- Important implications:
 - Asset Pricing models
 - Long-term Investing
 - Corporate Finance

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts
 - $\widehat{\mathbb{E}}[R_e R_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- Important implications:
 - Asset Pricing models
 - Long-term Investing
 - Corporate Finance

- Two stylized facts in Asset Pricing:
 - Large equity premium $\Rightarrow \mathbb{E}[R_e R_f] \in [4\%, 8\%]$
 - Excess volatility $\Rightarrow \sigma[R_e] \in [15\%, 20\%]$
- This paper: long duration of equities drives such stylized facts
 - $\widehat{\mathbb{E}}[R_e R_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- Important implications:
 - Asset Pricing models
 - Long-term Investing
 - Corporate Finance

The Paper's Empirical Results

$$R_b = \sum_{n=1}^{\infty} w_n \cdot R_b^{(n)} = \sum_{n=1}^{N} \widehat{w}_n \cdot \widehat{R}_b^{(n)}$$

The Paper's Empirical Results

The Paper's Em	pirical Results
----------------	-----------------

	1996-2021			1970-2021					
N	30	40	30	40	30	40	30	40	
Dividend Yield	3%	3%	2%	2%	3%	3%	2%	2%	
Duration	19.9	23.4	22.6	27.6	19.9	23.4	22.6	27.6	
$\mathbb{E}[R_e - R_b]$	1.4%	-0.3%	0.7%	-1.7%	-0.9%	-8.0%	-2.1%	-12.1%	
$\sigma[R_e] - \sigma[R_b]$	-0.0%	-1.1%	-0.6%	-2.4%	-2.7%	-6.7%	-4.3%	-10.7%	

Outline

The Paper

My Comments

- 1) The Low (Duration-Matched) Equity Premium
 - The main result $(\mathbb{E}[R_e R_b] \le 0)$ is robust and important
 - Also holds with completely different empirical methods:

- The main result $(\mathbb{E}[R_e R_b] \le 0)$ is robust and important
- Also holds with completely different empirical methods:
 - Andrews and Gonçalves (2021)
 - $\circ~$ No-arbitrage model to price portfolios sorted on duration
 - Explore the Bond, Equity, and Real Estate term structures

- The main result $(\mathbb{E}[R_e R_b] \le 0)$ is robust and important
- Also holds with completely different empirical methods:
 - Andrews and Gonçalves (2021)
 - No-arbitrage model to price portfolios sorted on duration
 - Explore the Bond, Equity, and Real Estate term structures

- The main result $(\mathbb{E}[R_e R_b] \le 0)$ is robust and important
- Also holds with completely different empirical methods:
 - Andrews and Gonçalves (2021)
 - No-arbitrage model to price portfolios sorted on duration
 - Explore the Bond, Equity, and Real Estate term structures

- The main result $(\mathbb{E}[R_e R_b] \le 0)$ is robust and important
- Also holds with completely different empirical methods:
 - Andrews and Gonçalves (2021)
 - No-arbitrage model to price portfolios sorted on duration
 - Explore the Bond, Equity, and Real Estate term structures

- The main result $(\mathbb{E}[R_e R_b] \le 0)$ is robust and important
- Also holds with completely different empirical methods:
 - Andrews and Gonçalves (2021)
 - No-arbitrage model to price portfolios sorted on duration
 - Explore the Bond, Equity, and Real Estate term structures

- The main result $(\mathbb{E}[R_e R_b] \le 0)$ is robust and important
- Also holds with completely different empirical methods:
 - Andrews and Gonçalves (2021)
 - No-arbitrage model to price portfolios sorted on duration
 - Explore the Bond, Equity, and Real Estate term structures

2) Formalizing the Potential Explanations

• From Gonçalves (2021), we have (with $\widetilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$):

Similarly, we have (derivations in slide appendix):

2) Formalizing the Potential Explanations • From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$): $\tilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$

 $\circ N^{(n)}_{\Delta d,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\Sigma_{j=0}^n \Delta d_{t+j}]$ is dividend growth news

 $\circ \ N^{(n)}_{rd,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\Sigma^n_{j=1}r^{(n-j+1)}_{d,t+j}] \text{ is dividend expected return news}$

Similarly, we have (derivations in slide appendix):

2) Formalizing the Potential Explanations • From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$): $\tilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$ • $N_{\Delta d,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=0}^n \Delta d_{t+j}]$ is dividend growth news

2) Formalizing the Potential Explanations • From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$):

$$\widetilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$$

 $\circ \ \ N^{(n)}_{\Delta d,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\Sigma_{j=0}^n \Delta d_{t+j}] \text{ is dividend growth news}$

 $\circ \ N_{rd,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=1}^n r_{d,t+j}^{(n-j+1)}] \text{ is dividend expected return news}$

Similarly, we have (derivations in slide appendix):

$$- N_{\Delta \pi,t}^{(n-1)} - N_{rb,t}^{(n-1)}$$

2) Formalizing the Potential Explanations

• From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$):

$$\widetilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$$

 $\circ \ \ N^{(n)}_{\Delta d,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\boldsymbol{\Sigma}^n_{j=0}\Delta d_{t+j}] \text{ is dividend growth news}$

• $N_{rd,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=1}^n r_{d,t+j}^{(n-j+1)}]$ is dividend expected return news

• Similarly, we have (derivations in slide appendix):

$$\widetilde{r}_{b,t}^{(n)} = - N_{\Delta\pi,t}^{(n-1)} - N_{rb,t}^{(n-1)}$$

• $N_{\Delta\pi,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\Sigma_{j=0}^n \Delta \pi_{t+j}]$ is inflation news • $N_{rb,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\Sigma_{j=1}^n r_{b,t+j}^{(n-j+1)}]$ is bond expected return news

2) Formalizing the Potential Explanations

• From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$):

$$\widetilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$$

 $\circ \ \ N^{(n)}_{\Delta d,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\boldsymbol{\Sigma}^n_{j=0}\Delta d_{t+j}] \text{ is dividend growth news}$

• $N_{rd,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=1}^n r_{d,t+j}^{(n-j+1)}]$ is dividend expected return news

• Similarly, we have (derivations in slide appendix):

$$\widetilde{r}_{b,t}^{(n)} = - N_{\Delta\pi,t}^{(n-1)} - N_{rb,t}^{(n-1)}$$

 $\circ \ \ N^{(n)}_{\Delta\pi,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=0}^n \Delta\pi_{t+j}] \text{ is inflation news}$ $\circ \ \ N^{(n)}_{rb,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=1}^n r^{(n-j+1)}_{b,t+j}] \text{ is bond expected return news}$

• Hence:

 $\begin{aligned} R_{e,t} &= \mathbb{E}_{t-1}[R_{e,t}] + \Sigma_{n=1}^{\infty} w_n \cdot \widetilde{R}_{d,t}^{(n)} \approx \mathbb{E}_{t-1}[R_{o,t}] + N_{\Delta,t} = N_{o,t} \\ R_{o,t} &= \mathbb{E}_{t-1}[R_{o,t}] + \Sigma_{n=1}^{\infty} w_n \cdot \widetilde{R}_{n}^{(n)} \approx \mathbb{E}_{t-1}[R_{o,t}] = N_{\Delta,t} = N_{o,t} \\ \Omega_{n} w_{n} \cdot \widetilde{R}_{n}^{(n)} \approx \mathbb{E}_{t-1}[R_{o,t}] = N_{\Delta,t} = N_{o,t} \end{aligned}$

2) Formalizing the Potential Explanations

• From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$):

$$\widetilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$$

 $\circ \ \ N^{(n)}_{\Delta d,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\boldsymbol{\Sigma}^n_{j=0}\Delta d_{t+j}] \text{ is dividend growth news}$

• $N_{rd,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=1}^n r_{d,t+j}^{(n-j+1)}]$ is dividend expected return news

• Similarly, we have (derivations in slide appendix):

$$\widetilde{r}_{b,t}^{(n)} = - N_{\Delta\pi,t}^{(n-1)} - N_{rb,t}^{(n-1)}$$

 $\circ \ \ N_{\Delta\pi,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1} [\sum_{j=1}^n \Delta\pi_{t+j}] \text{ is inflation news}$ $\circ \ \ N_{tb,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1} [\sum_{j=1}^n r_{b,t+j}^{(n-j+1)}] \text{ is bond expected return news}$

• Hence:

 $R_{e,t} = \mathbb{E}_{t-1}[R_{e,t}] + \sum_{n=1}^{\infty} w_n \cdot \widetilde{R}_{d,t}^{(n)} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$

 $R_{b,t} = \mathbb{E}_{t-1}[R_{b,t}] + \Sigma_{n=1}^{\infty} w_n \cdot \widetilde{R}_{b,t}^{(n)} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta\pi,t} - N_{tb,t}$

$$\Sigma$$
 where $N_{x,t}^{(h)} = \Sigma_{n=1}^\infty w_n \cdot N_{x,t}^{(n-1)}$

2) Formalizing the Potential Explanations

• From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$):

$$\widetilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$$

 $\circ \ \ N^{(n)}_{\Delta d,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\boldsymbol{\Sigma}^n_{j=0}\Delta d_{t+j}] \text{ is dividend growth news}$

 $\circ \ \ N_{rd,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\Sigma_{j=1}^n r_{d,t+j}^{(n-j+1)}] \text{ is dividend expected return news}$

• Similarly, we have (derivations in slide appendix):

$$\widetilde{r}_{b,t}^{(n)} = - N_{\Delta\pi,t}^{(n-1)} - N_{rb,t}^{(n-1)}$$

 $\circ \ \ N_{\Delta\pi,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1} [\sum_{j=1}^n \Delta\pi_{t+j}] \text{ is inflation news}$ $\circ \ \ N_{tb,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1} [\sum_{j=1}^n r_{b,t+j}^{(n-j+1)}] \text{ is bond expected return news}$

• Hence:

$$R_{e,t} = \mathbb{E}_{t-1}[R_{e,t}] + \sum_{n=1}^{\infty} w_n \cdot \widetilde{R}_{d,t}^{(n)} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

 $R_{b,t} = \mathbb{E}_{t-1}[R_{b,t}] + \sum_{n=1}^{\infty} w_n \cdot \widetilde{R}_{b,t}^{(n)} \approx \mathbb{E}_{t-1}[R_{t-1}] - N_{t-1} - N_{t-1}$

• where
$$N_{x,t}^{(h)} = \sum_{n=1}^{\infty} w_n \cdot N_{x,t}^{(n-1)}$$

2) Formalizing the Potential Explanations

• From Gonçalves (2021), we have (with $\tilde{x}_t \equiv x_t - \mathbb{E}_{t-1}[x_t]$):

$$\widetilde{r}_{d,t}^{(n)} = + N_{\Delta d,t}^{(n-1)} - N_{rd,t}^{(n-1)}$$

 $\circ \ \ N^{(n)}_{\Delta d,t} = \mathbb{E}_t - \mathbb{E}_{t-1}[\boldsymbol{\Sigma}^n_{j=0}\Delta d_{t+j}] \text{ is dividend growth news}$

• $N_{rd,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1}[\sum_{j=1}^n r_{d,t+j}^{(n-j+1)}]$ is dividend expected return news

• Similarly, we have (derivations in slide appendix):

$$\widetilde{r}_{b,t}^{(n)} = - N_{\Delta\pi,t}^{(n-1)} - N_{rb,t}^{(n-1)}$$

 $\circ \ \ N_{\Delta\pi,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1} [\sum_{j=1}^n \Delta\pi_{t+j}] \text{ is inflation news}$ $\circ \ \ N_{tb,t}^{(n)} = \mathbb{E}_t - \mathbb{E}_{t-1} [\sum_{j=1}^n r_{b,t+j}^{(n-j+1)}] \text{ is bond expected return news}$

$$R_{e,t} = \mathbb{E}_{t-1}[R_{e,t}] + \sum_{n=1}^{\infty} w_n \cdot \widetilde{R}_{d,t}^{(n)} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} = \mathbb{E}_{t-1}[R_{b,t}] + \sum_{n=1}^{\infty} w_n \cdot \widetilde{R}_{b,t}^{(n)} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta\pi,t} - N_{rb,t}$$

• where
$$N_{x,t}^{(h)} = \sum_{n=1}^{\infty} w_n \cdot N_{x,t}^{(n-1)}$$

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

The quantity estimated in the paper is:

• The four potential explanations:

Final Remarks

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

• The quantity estimated in the paper is:

$$\widehat{\mathbb{E}}[\underline{R}_{e} - \underline{R}_{b}] = \frac{1}{T} \cdot \sum_{t=1}^{T} (\underline{R}_{e,t} - \underline{R}_{b,t})$$

$$\approx \mathbb{E}[\underline{R}_{e} - \underline{R}_{e}] + \frac{\sum_{t=1}^{T} N_{b,t}}{T} + \frac{\sum_{t=1}^{T} N_{b,t}}{T} - \frac{\sum_{t=1}^{T} (N_{b,t} - N_{b,t})}{T}$$

• The four potential explanations:

Final Remarks

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

• The quantity estimated in the paper is:

$$\widehat{\mathbb{E}}[R_e - R_b] = \frac{1}{T} \cdot \sum_{t=1}^T (R_{e,t} - R_{b,t})$$

$$\approx \mathbb{E}[R_e - R_b] + \frac{\sum_{t=1}^T N_{\Delta d,t}}{T} + \frac{\sum_{t=1}^T N_{\Delta \pi,t}}{T} - \frac{\sum_{t=1}^T (N_{rd,t} - N_{rb,t})}{T}$$

• The four potential explanations:

Final Remarks

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

The quantity estimated in the paper is:

$$\widehat{\mathbb{E}}[R_e - R_b] = \frac{1}{T} \cdot \sum_{t=1}^T (R_{e,t} - R_{b,t})$$

$$\approx \mathbb{E}[R_e - R_b] + \frac{\sum_{t=1}^T N_{\Delta d,t}}{T} + \frac{\sum_{t=1}^T N_{\Delta \pi,t}}{T} - \frac{\sum_{t=1}^T (N_{rd,t} - N_{rb,t})}{T}$$

The four potential explanations:

1) Investors priced in a $\mathbb{E}[R_e - R_b] \leq 0$

2) Unexpected decrease in growth: $\Sigma_{t=1}^{T} N_{\Delta d,t} < 0$

3) Unexpected decrease in inflation: $\Sigma_{t=1}^{T} N_{\Delta \pi, t} < 0$

Final Remarks

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

The quantity estimated in the paper is:

$$\widehat{\mathbb{E}}[R_e - R_b] = \frac{1}{T} \cdot \sum_{t=1}^T (R_{e,t} - R_{b,t})$$

$$\approx \mathbb{E}[R_e - R_b] + \frac{\sum_{t=1}^T N_{\Delta d,t}}{T} + \frac{\sum_{t=1}^T N_{\Delta \pi,t}}{T} - \frac{\sum_{t=1}^T (N_{rd,t} - N_{rb,t})}{T}$$

The four potential explanations:

1) Investors priced in a $\mathbb{E}[\textit{\textbf{R}}_{e}-\textit{\textbf{R}}_{b}]\leq 0$

2) Unexpected decrease in growth: $\Sigma_{t=1}^T N_{\Delta d,t} < 0$

3) Unexpected decrease in inflation: $\Sigma_{t=1}^T N_{\Delta \pi, t} < 0$

Final Remarks

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

The quantity estimated in the paper is:

$$\widehat{\mathbb{E}}[R_e - R_b] = \frac{1}{T} \cdot \sum_{t=1}^T (R_{e,t} - R_{b,t})$$

$$\approx \mathbb{E}[R_e - R_b] + \frac{\sum_{t=1}^T N_{\Delta d,t}}{T} + \frac{\sum_{t=1}^T N_{\Delta \pi,t}}{T} - \frac{\sum_{t=1}^T (N_{rd,t} - N_{rb,t})}{T}$$

The four potential explanations:

1) Investors priced in a $\mathbb{E}[\textit{\textbf{R}}_{e}-\textit{\textbf{R}}_{b}]\leq 0$

2) Unexpected decrease in growth: $\sum_{t=1}^{T} N_{\Delta d,t} < 0$

3) Unexpected decrease in inflation: $\Sigma_{t=1}^T N_{\Delta\pi,t} < 0$

Final Remarks

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

The quantity estimated in the paper is:

$$\widehat{\mathbb{E}}[R_e - R_b] = \frac{1}{T} \cdot \sum_{t=1}^T (R_{e,t} - R_{b,t})$$

$$\approx \mathbb{E}[R_e - R_b] + \frac{\sum_{t=1}^T N_{\Delta d,t}}{T} + \frac{\sum_{t=1}^T N_{\Delta \pi,t}}{T} - \frac{\sum_{t=1}^T (N_{rd,t} - N_{rb,t})}{T}$$

• The four potential explanations:

1) Investors priced in a $\mathbb{E}[\textit{\textbf{R}}_{e}-\textit{\textbf{R}}_{b}]\leq 0$

2) Unexpected decrease in growth: $\sum_{t=1}^{T} N_{\Delta d,t} < 0$

3) Unexpected decrease in inflation: $\sum_{t=1}^{T} N_{\Delta \pi, t} < 0$

Final Remarks

2) Formalizing the Potential Explanations

$$R_{e,t} \approx \mathbb{E}_{t-1}[R_{e,t}] + N_{\Delta d,t} - N_{rd,t}$$

$$R_{b,t} \approx \mathbb{E}_{t-1}[R_{b,t}] - N_{\Delta \pi,t} - N_{rb,t}$$

The quantity estimated in the paper is:

$$\widehat{\mathbb{E}}[R_e - R_b] = \frac{1}{T} \cdot \sum_{t=1}^T (R_{e,t} - R_{b,t})$$

$$\approx \mathbb{E}[R_e - R_b] + \frac{\sum_{t=1}^T N_{\Delta d,t}}{T} + \frac{\sum_{t=1}^T N_{\Delta \pi,t}}{T} - \frac{\sum_{t=1}^T (N_{rd,t} - N_{rb,t})}{T}$$

The four potential explanations:

1) Investors priced in a $\mathbb{E}[\textit{\textbf{R}}_{e}-\textit{\textbf{R}}_{b}]\leq 0$

2) Unexpected decrease in growth: $\sum_{t=1}^{T} N_{\Delta d,t} < 0$

3) Unexpected decrease in inflation: $\sum_{t=1}^{T} N_{\Delta \pi, t} < 0$

• We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):

• Prior asset pricing models generate high $\mathbb{E}[R_e - R_f]$ through:

- We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):
- $\mathbb{E}_t[\underline{R_e} R_f] = Cov_t[-M, \ \widetilde{\underline{R}_e}]$

 $\approx Cov_t[-M, N_{\Delta d}] + Cov_t[M, N_{rd}]$

 $= Cov_t[-M, N_{\Delta d}] + Cov_t[M, (N_{rd} - N_{rb})] + Cov_t[M, N_{rb}]$

• Prior asset pricing models generate high $\mathbb{E}[R_e - R_f]$ through:

• We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):

$$\mathbb{E}_{t}[R_{e} - R_{f}] = Cov_{t}[-M, \widetilde{R}_{e}]$$

$$\approx Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, N_{rd}]$$

$$= Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, (N_{rd} - N_{rd})] + Cov_{t}[M, N_{rd}]$$

• Prior asset pricing models generate high $\mathbb{E}[R_e - R_f]$ through:

• We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):

$$\mathbb{E}_{t}[R_{e} - R_{f}] = Cov_{t}[-M, \widetilde{R}_{e}]$$

$$\approx Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, N_{rd}]$$

$$= Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, (N_{rd} - N_{rb})] + Cov_{t}[M, N_{rb}]$$

Prior asset pricing models generate high 𝔼[𝑘_e − 𝑘_f] through:

• We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):

$$\mathbb{E}_{t}[R_{e} - R_{f}] = Cov_{t}[-M, \widetilde{R}_{e}]$$

$$\approx Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, N_{rd}]$$

$$= Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, (N_{rd} - N_{rb})] + Cov_{t}[M, N_{rb}]$$

• Prior asset pricing models generate high $\mathbb{E}[R_e - R_f]$ through:

• $Cov_t[-M, N_{\Delta d}]$ (e.g., long-run risks model)

• $Cov_t[M, (N_{rd} - N_{rb})]$ (e.g., habit formation)

• We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):

$$\mathbb{E}_{t}[R_{e} - R_{f}] = Cov_{t}[-M, \widetilde{R}_{e}]$$

$$\approx Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, N_{rd}]$$

$$= Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, (N_{rd} - N_{rb})] + Cov_{t}[M, N_{rb}]$$

• Prior asset pricing models generate high $\mathbb{E}[R_e - R_f]$ through:

• $Cov_t[-M, N_{\Delta d}]$ (e.g., long-run risks model)

• $Cov_t[M, (N_{rd} - N_{rb})]$ (e.g., habit formation)

• We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):

$$\mathbb{E}_{t}[R_{e} - R_{f}] = Cov_{t}[-M, \widetilde{R}_{e}]$$

$$\approx Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, N_{rd}]$$

$$= Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, (N_{rd} - N_{rb})] + Cov_{t}[M, N_{rb}]$$

• Prior asset pricing models generate high $\mathbb{E}[R_e - R_f]$ through:

 $\circ Cov_t[-M, N_{\Delta d}]$ (e.g., long-run risks model)

• $Cov_t[M, (N_{rd} - N_{rb})]$ (e.g., habit formation)

• We generally have (with $\mathbb{E}_t[M] = 1$ for simplicity):

$$\mathbb{E}_{t}[R_{e} - R_{f}] = Cov_{t}[-M, \widetilde{R}_{e}]$$

$$\approx Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, N_{rd}]$$

$$= Cov_{t}[-M, N_{\Delta d}] + Cov_{t}[M, (N_{rd} - N_{rb})] + Cov_{t}[M, N_{rb}]$$

Prior asset pricing models generate high 𝔼[𝒫_e − 𝒫_f] through:

 $\circ Cov_t[-M, N_{\Delta d}]$ (e.g., long-run risks model)

• $Cov_t[M, (N_{rd} - N_{rb})]$ (e.g., habit formation)

• However, if $\mathbb{E}[R_e - R_b] \leq 0$ holds:

• $Cov_t[M, N_{rb}]$ drives equity premium

Outline

The Paper

My Comments

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
 - $\widehat{\mathbb{E}}[R_e-R_b]pprox 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] pprox 0$ (or even < 0)
- It would be useful to:

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
 - $\widehat{\mathbb{E}}[\underline{R}_e \underline{R}_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- It would be useful to:

Final Remarks

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
 - $\widehat{\mathbb{E}}[\underline{R}_e \underline{R}_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- It would be useful to:

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
 - $\widehat{\mathbb{E}}[\underline{R}_e \underline{R}_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[\underline{R_e}] \widehat{\sigma}[\underline{R_b}] \approx 0$ (or even < 0)
- It would be useful to:

• Formalize the potential explanations for the empirical results

Dig deeper into the implications to asset pricing models

Good luck!

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
 - $\widehat{\mathbb{E}}[\underline{R}_e \underline{R}_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- It would be useful to:
 - Formalize the potential explanations for the empirical results
 - \circ Dig deeper into the implications to asset pricing models
- Good luck!

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
 - $\widehat{\mathbb{E}}[\underline{R}_e \underline{R}_b] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- It would be useful to:
 - Formalize the potential explanations for the empirical results
 - Dig deeper into the implications to asset pricing models

Good luck!

- Very interesting paper that provides a novel perspective on key asset pricing stylized facts:
 - $\widehat{\mathbb{E}}[\underline{R_e} \underline{R_b}] \approx 0$ (or even < 0)
 - $\widehat{\sigma}[R_e] \widehat{\sigma}[R_b] \approx 0$ (or even < 0)
- It would be useful to:
 - Formalize the potential explanations for the empirical results
 - Dig deeper into the implications to asset pricing models
- Good luck!

Return Components (Derivation)

•
$$\$ R_{t+1}^{(n)} = P_{t+1}^{(n-1)} / P_t^{(n)}$$

(where $P_t^{(0)} = CF_t$ is the asset nominal cash flow)
• $\$ r_{t+1}^{(n)} = p_{t+1}^{(n-1)} - p_t^{(n)} = pcf_{t+1}^{(n-1)} - pcf_t^{(n)} + \Delta cf_{t+1}$
(where $pcf_t = log(P_t/CF_t)$)
• $r_{t+1}^{(n)} = \$ r_{t+1}^{(n)} - \Delta \pi_{t+1} = pcf_{t+1}^{(n-1)} - pcf_t^{(n)} + \Delta cf_{t+1} - \Delta \pi_{t+1}$
(where $\Delta \pi_t = log(\Pi_{t+1}/\Pi_t)$ is the growth in an inflation index)
• Iterating $pcf_t^{(n)}$ forward and using $\tilde{r}_t^{(n)} = \widetilde{pcf}_t^{(n-1)} + \widetilde{\Delta cf}_t - \widetilde{\Delta \pi}_t$

$$\widetilde{r}_t^{(n)} = \left(\mathbb{E}_t - \mathbb{E}_{t-1}\right) \left[\Sigma_{j=0}^{n-1} \Delta c f_{t+j} - \Delta \pi_{t+j} \right] - \left(\mathbb{E}_t - \mathbb{E}_{t-1}\right) \left[\Sigma_{j=0}^{n-1} r_{t+j}^{(n-j)} \right]$$

- Dividend strips: $\Delta c f_{t+1} = log(D_{t+1}^{\$}/D_t^{\$}) = \Delta d_{t+1} + \Delta \pi_{t+1}$
- Nominal Bond strips: $\Delta c f_{t+1} = log(1/1) = 0$
- Real Bond strips: $\Delta c f_{t+1} = log(\Pi_{t+1}/\Pi_t) = \Delta \pi_{t+1}$