

Consumption

Svetlana Bryzgalova and Christian Julliard

Discussant: Andrei S. Gonçalves

2022 AFA

Outline

The Paper

My Comments

Final Remarks

• Typical CCAPMs:

• The Paper's Logic:

- Typical CCAPMs:
 - $\circ ~ \mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\circ \mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\circ \mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\circ \ \mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - \circ Households react to shocks by adjusting both c_t and ϖ_t
 - $\circ~$ Holding supply fixed, adjustments in ϖ_t lead to price changes
 - $\circ~$ We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - \circ Households react to shocks by adjusting both c_t and $arpi_t$
 - $\circ~$ Holding supply fixed, adjustments in ϖ_t lead to price changes
 - $\circ~$ We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - Households react to shocks by adjusting both c_t and ϖ_t
 - $\circ~$ Holding supply fixed, adjustments in ϖ_t lead to price changes
 - \circ We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - \circ We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:
 - $\circ \mathbb{E}_t[\Delta c]$ is very volatile
 - $\circ \,\, \mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns
 - $\circ \,\, \mathbb{E}_t[\Delta c]$ implies little variation in $\mathbb{V}{\it ar}_t[\Delta c]$

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:
 - $\mathbb{E}_t[\Delta c]$ is very volatile
 - $\circ ~ \mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns
 - $\circ \mathbb{E}_t[\Delta c]$ implies little variation in $\mathbb{V}ar_t[\Delta c]$

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:
 - $\mathbb{E}_t[\Delta c]$ is very volatile
 - $\circ~\mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns

 $\circ \,\, \mathbb{E}_t[\Delta c]$ implies little variation in $\mathbb{V}{\it ar}_t[\Delta c]$

- Typical CCAPMs:
 - $\mathbb{E}_t[\Delta c]$ is constant (e.g., Campbell and Cochrane (1999))
 - $\mathbb{E}_t[\Delta c]$ is highly persistent (e.g., Bansal and Yaron (2004))
- The Paper's Logic:
 - $\mathbb{E}_t[\Delta c]$ is hard to identify from Δc_t data (dark matter)
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- The Paper's Findings:
 - $\mathbb{E}_t[\Delta c]$ is very volatile
 - $\circ~\mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns
 - $\mathbb{E}_t[\Delta c]$ implies little variation in $\mathbb{V}ar_t[\Delta c]$

- Returns have a one-factor structure
- The common factor predicts future consumption

• Returns have a one-factor structure

 $\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$

The common factor predicts future consumption

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

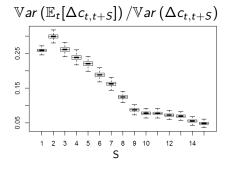
$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$



• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

• $\mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns:

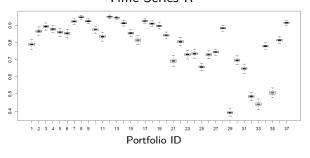
• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

• $\mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns: Time-Series R^2



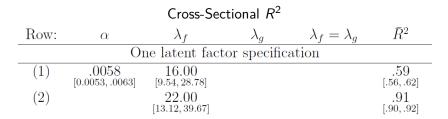
• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

• $\mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns:



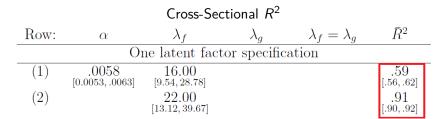
• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

• $\mathbb{E}_t[\Delta c]$ shocks explain time-series and cross-section of returns:



• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} f_{t-j} + w_{t}^{c}$$

$$\Delta c_{t+1} = \mu_t + \epsilon_{t+1}$$
$$\sigma_{t+1}^2 = \omega + \alpha \epsilon_t^2 + \beta \sigma_t^2$$

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{S} \rho_j f_{t-j} + w_t^c$$

$\Delta c_{t+1} = \mu_t + \epsilon_{t+1}$ $\sigma_{t+1}^2 = \omega + \alpha \epsilon_t^2 + \beta \sigma_t^2$					
	ω	α	β		
$\mu_t = \mu_0 + \mu_1^c \Delta c_t$					
Estimate	7.279×10^{-6}	0.141	0.719		
t-stat	[1.912]	[1.664]	[8.928]		

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{S} \rho_j f_{t-j} + w_t^c$$

$\Delta c_{t+1} = \mu_t + \epsilon_{t+1}$ $\sigma_{t+1}^2 = \omega + \alpha \epsilon_t^2 + \beta \sigma_t^2$					
	ω	α	β		
$\mu_t = \mu_0 + \mu_1^c \Delta c_t$					
Estimate	7.279×10^{-6}	0.141	0.719		
t-stat	[1.912]	[1.664]	[8.928]		

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{S} \rho_j f_{t-j} + w_t^c$$

$$\begin{aligned} \Delta c_{t+1} &= \mu_t + \epsilon_{t+1} \\ \sigma_{t+1}^2 &= \omega + \alpha \epsilon_t^2 + \beta \sigma_t^2 \\ \hline \mu_t &= \mu_0 + \mu_1^c \Delta c_t \\ \hline Estimate & 7.279 \times 10^{-6} & 0.141 \\ t-stat & [1.912] & [1.664] & [8.928] \\ \hline \mu_t &= \mu_0 + \sum_{i=1}^{S} \rho_i f_{t+1-i} \\ \hline Estimate & 3.502 \times 10^{-5} & 7.678 \times 10^{-2} & 3.421 \times 10^{-2} \\ t-stat & [1.363] & [0.957] & [0.053] \end{aligned}$$

• Returns have a one-factor structure

$$\mathbf{r}_t^e = \boldsymbol{\mu}_r + \boldsymbol{\rho}^r f_t + \mathbf{w}_t^r$$

• The common factor predicts future consumption

$$\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{S} \rho_j f_{t-j} + w_t^c$$

$$\Delta c_{t+1} = \mu_t + \epsilon_{t+1}$$

$$\sigma_{t+1}^2 = \omega + \alpha \epsilon_t^2 + \beta \sigma_t^2$$

$$\omega \qquad \alpha \qquad \beta$$

$$\mu_t = \mu_0 + \mu_1^c \Delta c_t$$
Estimate 7.279 × 10⁻⁶ 0.141 0.719
t-stat [1.912] [1.664] [8.928]
$$\mu_t = \mu_0 + \sum_{i=1}^{S} \rho_i f_{t+1-i}$$
Estimate 3.502 × 10⁻⁵ 7.678 × 10⁻² 3.421 × 10⁻²
t-stat [1.363] [0.957] [0.053]

Outline

The Paper

My Comments

Final Remarks

• Parker and Julliard (2005)

• The current paper

- Parker and Julliard (2005)
 - $\mathbb{C}ov(r_t^e, \Delta c_{t-1,t}) \neq \mathbb{C}ov(r_t^e, \Delta c_{t-1,t+S})$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper

- Parker and Julliard (2005)
 - $\mathbb{C}ov(r_t^e, \Delta c_{t-1,t}) \neq \mathbb{C}ov(r_t^e, \Delta c_{t-1,t+s})$
 - But this result implies $\mathbb{C}ov\left(r_{t}^{e},\Delta c_{t,t+S}
 ight)
 eq 0$
 - Current r^e must predict future Δc
- The current paper

- Parker and Julliard (2005)
 - $\mathbb{C}ov(r_t^e, \Delta c_{t-1,t}) \neq \mathbb{C}ov(r_t^e, \Delta c_{t-1,t+s})$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper

- Parker and Julliard (2005)
 - $\mathbb{C}ov(r_t^e, \Delta c_{t-1,t}) \neq \mathbb{C}ov(r_t^e, \Delta c_{t-1,t+s})$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper

- Parker and Julliard (2005)
 - $\circ \ \mathbb{C}ov\left(r_{t}^{e}, \Delta c_{t-1, t}\right) \neq \mathbb{C}ov\left(r_{t}^{e}, \Delta c_{t-1, t+S}\right)$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper
 - $\circ~$ Characterizes this Δc predictability
 - $\circ~$ Puts discipline in the "dark matter" implicit in $\mathbb{E}_t[\Delta c]$
 - Explores further implications of $\mathbb{E}_t[\Delta c]$
- I would put less emphasis on the cross-section and more emphasis on the $\mathbb{V}ar_t[\Delta c]$ evidence

- Parker and Julliard (2005)
 - $\mathbb{C}ov(r_t^e, \Delta c_{t-1,t}) \neq \mathbb{C}ov(r_t^e, \Delta c_{t-1,t+s})$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper
 - $\circ~$ Characterizes this Δc predictability
 - \circ Puts discipline in the "dark matter" implicit in $\mathbb{E}_t[\Delta c]$
 - Explores further implications of $\mathbb{E}_t[\Delta c]$
- I would put less emphasis on the cross-section and more emphasis on the $\mathbb{V}ar_t[\Delta c]$ evidence

- Parker and Julliard (2005)
 - $\circ \ \mathbb{C}ov\left(r_{t}^{e}, \Delta c_{t-1, t}\right) \neq \mathbb{C}ov\left(r_{t}^{e}, \Delta c_{t-1, t+S}\right)$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper
 - Characterizes this Δc predictability
 - Puts discipline in the "dark matter" implicit in $\mathbb{E}_t[\Delta c]$
 - Explores further implications of $\mathbb{E}_t[\Delta c]$
- I would put less emphasis on the cross-section and more emphasis on the $\mathbb{V}ar_t[\Delta c]$ evidence

- Parker and Julliard (2005)
 - $\mathbb{C}ov(r_t^e, \Delta c_{t-1,t}) \neq \mathbb{C}ov(r_t^e, \Delta c_{t-1,t+s})$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper
 - Characterizes this Δc predictability
 - Puts discipline in the "dark matter" implicit in $\mathbb{E}_t[\Delta c]$
 - Explores further implications of $\mathbb{E}_t[\Delta c]$
- I would put less emphasis on the cross-section and more emphasis on the $\mathbb{V}ar_t[\Delta c]$ evidence

- Parker and Julliard (2005)
 - $\mathbb{C}ov(r_t^e, \Delta c_{t-1,t}) \neq \mathbb{C}ov(r_t^e, \Delta c_{t-1,t+s})$
 - But this result implies $\mathbb{C}ov(r_t^e, \Delta c_{t,t+S}) \neq 0$
 - Current r^e must predict future Δc
- The current paper
 - Characterizes this Δc predictability
 - Puts discipline in the "dark matter" implicit in $\mathbb{E}_t[\Delta c]$
 - Explores further implications of $\mathbb{E}_t[\Delta c]$
- I would put less emphasis on the cross-section and more emphasis on the $\mathbb{V}ar_t[\Delta c]$ evidence

2) $\mathbb{E}_t[\Delta c]$ is very volatile (but not that persistent)

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+1}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+1}\right)} = 26\% \text{ vs } 4.5\%$$

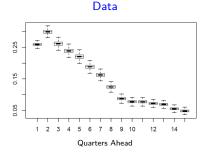
 $\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+15}\right)} = 5\% \ vs \ 5\%$

- LRR $\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)$ is in line with the data
- But wrong mechanism: what matters is short-run $\mathbb{E}_t[\Delta c]$

2) $\mathbb{E}_t[\Delta c]$ is very volatile (but not that persistent)

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+1}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+1}\right)} = 26\% \text{ vs } 4.5\%$$

 $\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+15}\right)} = 5\% \ vs \ 5\%$

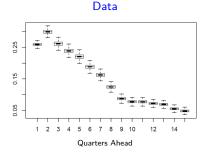


• LRR \mathbb{V} ar $(\mathbb{E}_t[\Delta c_{t,t+15}])$ is in line with the data

2) $\mathbb{E}_t[\Delta c]$ is very volatile (but not that persistent)

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+1}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+1}\right)} = 26\% \text{ vs } 4.5\%$$

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+15}\right)} = 5\% \text{ vs ???}$$

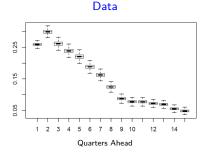


• LRR \mathbb{V} ar $(\mathbb{E}_t[\Delta c_{t,t+15}])$ is in line with the data

2) $\mathbb{E}_t[\Delta c]$ is very volatile (but not that persistent)

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+1}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+1}\right)} = 26\% \text{ vs } 4.5\%$$

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+15}\right)} = 5\% \text{ vs } 5\%$$

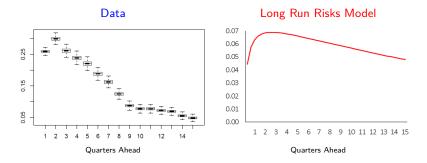


• LRR \mathbb{V} ar $(\mathbb{E}_t[\Delta c_{t,t+15}])$ is in line with the data

2) $\mathbb{E}_t[\Delta c]$ is very volatile (but not that persistent)

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+1}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+1}\right)} = 26\% \text{ vs } 4.5\%$$

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+15}\right)} = 5\% \text{ vs } 5\%$$

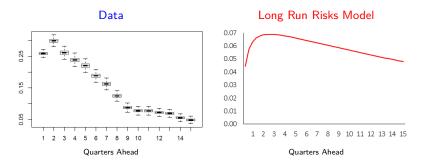


• LRR \mathbb{V} *ar* $(\mathbb{E}_t[\Delta c_{t,t+15}])$ is in line with the data

2) $\mathbb{E}_t[\Delta c]$ is very volatile (but not that persistent)

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+1}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+1}\right)} = 26\% \text{ vs } 4.5\%$$

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+15}\right)} = 5\% \text{ vs } 5\%$$

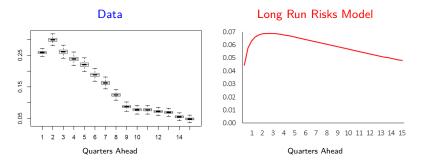


• LRR \mathbb{V} ar $(\mathbb{E}_t[\Delta c_{t,t+15}])$ is in line with the data

2) $\mathbb{E}_t[\Delta c]$ is very volatile (but not that persistent)

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+1}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+1}\right)} = 26\% \text{ vs } 4.5\%$$

$$\frac{\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+15}]\right)}{\mathbb{V}ar\left(\Delta c_{t,t+15}\right)} = 5\% \text{ vs } 5\%$$



• LRR \mathbb{V} ar $(\mathbb{E}_t[\Delta c_{t,t+15}])$ is in line with the data

3) $f_t \approx r_{m,t}^e$ $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^s \rho_j f_{t-j} + w_t^c$

- $Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$
- **Q1)** Do we really need f_t to characterize $\mathbb{E}_t[\Delta c]$?

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{S} \rho_j f_{t-j} + w_t^c$

- $Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$
- **Q1)** Do we really need f_t to characterize $\mathbb{E}_t[\Delta c]$?

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

•
$$Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$$

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

•
$$Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$$

$$\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{S} \rho_j r_{m,t-j}^c + w_t^c$$

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

•
$$Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$$

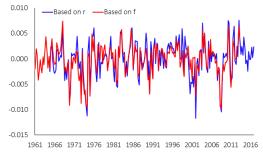
$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} r_{m,t-j}^{e} + w_{t}^{c}$$

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

•
$$Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$$

$$\Delta c_{t-1,t} = \mu_{c} + \sum_{j=0}^{S} \rho_{j} r_{m,t-j}^{e} + w_{t}^{c}$$



3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{S} \rho_j f_{t-j} + w_t^c$

•
$$Cor(\widehat{f}_t, r_{m,t}^e) = 94.5\%$$

$$Cov\left(\mathbf{r}^{e}_{t},\Delta c_{t-1,t+S}
ight) = -\sum_{j=0}^{S}
ho_{j}
ho^{r} \propto -Cov\left(\mathbf{r}^{e}_{t},f_{t}
ight)$$

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

•
$$Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$$

$$Cov\left(\mathbf{r}_{t}^{e},\Delta c_{t-1,t+S}
ight) = \sum_{j=0}^{S} \rho_{j}\rho^{r}$$
 for $Cov\left(\mathbf{r}_{t}^{e},b\right)$

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

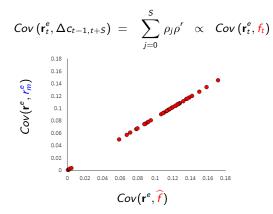
•
$$Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$$

$$Cov\left(\mathbf{r}_{t}^{e},\Delta c_{t-1,t+S}\right) = \sum_{j=0}^{S} \rho_{j}\rho' \propto Cov\left(\mathbf{r}_{t}^{e},\mathbf{f}_{t}\right)$$

3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

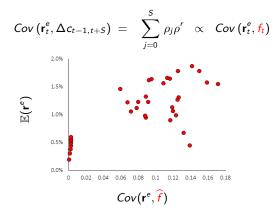
•
$$Cor(\widehat{f}_t, r^e_{m,t}) = 94.5\%$$



3)
$$f_t \approx r_{m,t}^e$$

 $\Delta c_{t-1,t} = \mu_c + \sum_{j=0}^{s} \rho_j f_{t-j} + w_t^c$

•
$$Cor(\widehat{f}_t, r_{m,t}^e) = 94.5\%$$



Other Comments

1. Do other variables predict Δc_t controlling for f_t history?

- 2. Could estimate preference parameters
- 3. Is it possible to disentangle Δc_t predictability from Δc_t filtering? (Kroencke 2017, JF)
- 4. Δc_t predictable, but f_t independent?
 - $\circ~$ If $\mathbb{E}[\Delta c]$ varies over time then $\mathbb{E}[\mathbf{r}^e]$ likely also does
 - This issue affects $Cov(\mathbf{r}_t^e, \Delta c_{t-1,t+S})$

Outline

The Paper

My Comments

- Interesting paper with novel perspective on Δc predictability:
 - \circ Households react to shocks by adjusting both c_t and $arpi_t$
 - \circ Holding supply fixed, adjustments in $arpi_t$ lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - $\circ\,$ Holding supply fixed, adjustments in $arpi_t$ lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes

 $\circ~$ We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$

• It would be useful to:

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:
 - Better explain that the contribution is not to show that r_t^e predicts $\Delta c_{t,t+S}$ but rather to characterize $\mathbb{E}_t[\Delta c]$
 - Show that $\mathbb{E}_t[\Delta c]$ is not that persistent (although volatile)
 - Justify why the latent f_t structure is preferred over $f_t = r_{m,t}^e$
- Good luck!

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:
 - Better explain that the contribution is not to show that r_t^e predicts $\Delta c_{t,t+S}$ but rather to characterize $\mathbb{E}_t[\Delta c]$
 - Show that $\mathbb{E}_t[\Delta c]$ is not that persistent (although volatile)
 - Justify why the latent f_t structure is preferred over $f_t = r_{m,t}^e$
- Good luck!

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:
 - Better explain that the contribution is not to show that r_t^e predicts $\Delta c_{t,t+S}$ but rather to characterize $\mathbb{E}_t[\Delta c]$
 - Show that $\mathbb{E}_t[\Delta c]$ is not that persistent (although volatile)
 - Justify why the latent f_t structure is preferred over $f_t = r_{m_t}^e$
- Good luck!

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:
 - Better explain that the contribution is not to show that r_t^e predicts $\Delta c_{t,t+S}$ but rather to characterize $\mathbb{E}_t[\Delta c]$
 - Show that $\mathbb{E}_t[\Delta c]$ is not that persistent (although volatile)
 - Justify why the latent f_t structure is preferred over $f_t = r_{m,t}^e$

- Interesting paper with novel perspective on Δc predictability:
 - Households react to shocks by adjusting both c_t and ϖ_t
 - Holding supply fixed, adjustments in ϖ_t lead to price changes
 - We can use the r_t history to identify $\mathbb{E}_t[\Delta c]$
- It would be useful to:
 - Better explain that the contribution is not to show that r_t^e predicts $\Delta c_{t,t+S}$ but rather to characterize $\mathbb{E}_t[\Delta c]$
 - Show that $\mathbb{E}_t[\Delta c]$ is not that persistent (although volatile)
 - Justify why the latent f_t structure is preferred over $f_t = r_{m,t}^e$
- Good luck!

Long Run Risks Model $\mathbb{V}ar\left(\mathbb{E}_t[\Delta c_{t,t+S}]\right)/\mathbb{V}ar\left(\Delta c_{t,t+S}\right)$

•
$$\mathbb{E}_t[\Delta c_{t,t+S}] = S \cdot \mu + (1 + \rho + \rho^2 + ... + \rho^{S-1}) \cdot x_t$$

•
$$\mathbb{V}ar\left(\mathbb{E}_{t}[\Delta c_{t,t+S}]\right) = (1 + \rho + \rho^{2} + ... + \rho^{S-1})^{2} \cdot \frac{\phi_{e}^{2} \cdot \sigma^{2}}{1 - \rho^{2}}$$

•
$$\mathbb{V}$$
ar $(\Delta c_{t,t+1} - \mathbb{E}_t[\Delta c_{t,t+1}]) = \sigma^2$

•
$$\mathbb{V}ar\left(\Delta c_{t,t+S} - \mathbb{E}_t[\Delta c_{t,t+S}]\right) = \sigma^2 \cdot S + \phi_e^2 \cdot \sigma^2 \cdot [1 + (1 + \rho) + (1 + \rho + \rho^2) + ... + (1 + \rho + \rho^2 + ... + \rho^{S-2})]$$

• $\mathbb{V}ar(\Delta c_{t,t+S}) = \mathbb{V}ar(\mathbb{E}_t[\Delta c_{t,t+S}]) + \mathbb{V}ar(\Delta c_{t,t+S} - \mathbb{E}_t[\Delta c_{t,t+S}])$