

Macro Trends and Factor Timing

Carlo A. Favero, Alessandro Melone, and Andrea Tamoni

Discussant: Andrei S. Gonçalves

2022 MFA

Outline

The Paper

My Comments

Final Remarks

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

 $\ln F_{j,t} = \ln F_{j,t-1} + f_{j,t}$ $\ln M_t = \ln M_{t-1} + m_t$ $F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_j \ln M_t + w_j$

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

 $\ln F_{j,t} = \ln F_{j,t-1} + f_{j,t}$

 $\ln M_t = \ln M_{t-1} + m_t$

 $\ln F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_{j} \ln M_{t} + w_{j,t}$

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

 $\ln F_{j,t} = \ln F_{j,t-1} + f_{j,t}$

 $\ln M_t = \ln M_{t-1} + m_t$

 $\ln F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_j \ln M_t + w_{j,t}$

If this cointegration holds, w_{j,t} predicts f_{j,t+1} or m_{t+1}:

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

 $\ln F_{j,t} = \ln F_{j,t-1} + f_{j,t}$

 $\ln M_t = \ln M_{t-1} + m_t$

 $\ln F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_{j} \ln M_{t} + \mathbf{w}_{j,t}$

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

 $\ln F_{j,t} = \ln F_{j,t-1} + f_{j,t}$

 $\mathrm{ln}\mathrm{M}_t ~=~ \mathrm{ln}\mathrm{M}_{t-1} ~+~ \mathrm{m}_t$

$$\ln F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_{j} \ln M_{t} + w_{j,t}$$

• If this cointegration holds, $w_{j,t}$ predicts $f_{j,t+1}$ or m_{t+1} :

 $w_{j,t+1} = \rho_j w_{j,t} + v_{j,t+1}$

 $f_{j,t+1} - \beta_j' m_{t+1} = \alpha_{1,j} + (\rho_j - 1) \cdot w_{j,t} + v_{j,t+1}$

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

 $\ln F_{j,t} = \ln F_{j,t-1} + f_{j,t}$

 $\mathrm{ln}\mathrm{M}_t ~=~ \mathrm{ln}\mathrm{M}_{t-1} ~+~ \mathrm{m}_t$

$$\ln F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_{j} \ln M_{t} + w_{j,t}$$

• If this cointegration holds, $w_{j,t}$ predicts $f_{j,t+1}$ or m_{t+1} :

 $\mathbf{W}_{j,t+1} = \rho_j \mathbf{W}_{j,t} + \mathbf{V}_{j,t+1}$

 $f_{j,t+1} - \beta'_j m_{t+1} = \alpha_{1,j} + (\rho_j - 1) \cdot w_{j,t} + v_{j,t+1}$

- Hard to build link between Macroeconomy and Asset Prices
- Paper does that in a cointegration framework:

 $\ln F_{j,t} = \ln F_{j,t-1} + f_{j,t}$

 $\ln M_t = \ln M_{t-1} + m_t$

$$\ln F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_{j} \ln M_{t} + w_{j,t}$$

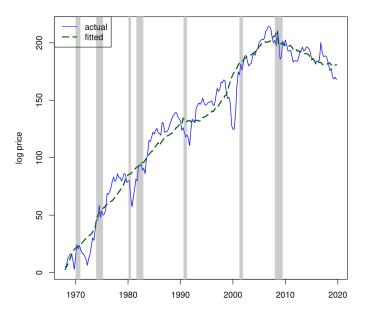
$$\mathbf{w}_{j,t+1} = \rho_j \mathbf{w}_{j,t} + \mathbf{v}_{j,t+1}$$

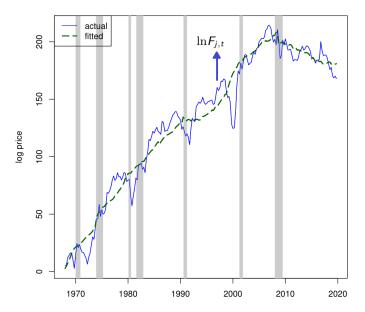
$$f_{j,t+1} - \beta_j' m_{t+1} = \alpha_{1,j} + (\rho_j - 1) \cdot w_{j,t} + v_{j,t+1}$$

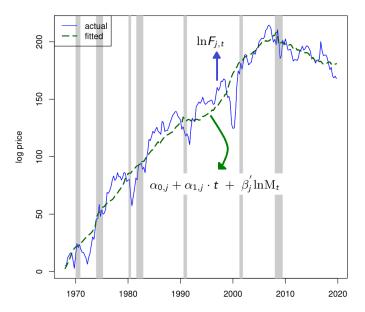
The Paper

Vy Comments

Final Remarks







The Paper

My Comments

Final Remarks

$w_{j,t}$ Predicts $f_{j,t+1}$ (in a Table)

Final Remarks

$w_{j,t}$ Predicts $f_{j,t+1}$ (in a Table)

Panel A: In-Sample

	MKT
$\overline{\text{ECT}_{factor}}$ (-4)	-0.573^{***} (0.090)
Constant	$\begin{array}{c} 4.875^{**} \\ (2.085) \end{array}$
Observations R ²	$204 \\ 0.307$

$w_{j,t}$ Predicts $f_{j,t+1}$ (in a Table)

	MKT	SMB	HML	RMW	CMA
ECT_{factor} (-4)	-0.573^{***}	-0.296^{***}	-0.573^{***}	-0.488^{***}	-0.526^{***}
	(0.090)	(0.057)	(0.101)	(0.152)	(0.107)
Constant	4.875^{**}	1.278	3.268^{**}	3.154^{***}	3.503^{***}
	(2.085)	(1.745)	(1.511)	(1.173)	(1.162)
Observations R ²	$\begin{array}{c} 204 \\ 0.307 \end{array}$	$\begin{array}{c} 204 \\ 0.195 \end{array}$	$204 \\ 0.282$	$\begin{array}{c} 204 \\ 0.199 \end{array}$	$\begin{array}{c} 204 \\ 0.266 \end{array}$

${\bf Panel} ~ {\bf A}: ~ {\rm In-Sample}$

$w_{j,t}$ Predicts $f_{j,t+1}$ (in a Table)

	MKT	SMB	HML	RMW	CMA
	MIXI	SMD	IIML		UMA
ECT_{factor} (-4)	-0.573^{***}	-0.296^{***}	-0.573^{***}	-0.488^{***}	-0.526^{***}
	(0.090)	(0.057)	(0.101)	(0.152)	(0.107)
Constant	4.875**	1.278	3.268**	3.154^{***}	3.503***
	(2.085)	(1.745)	(1.511)	(1.173)	(1.162)
Observations	204	204	204	204	204
\mathbb{R}^2	0.307	0.195	0.282	0.199	0.266

${\bf Panel} ~ {\bf A}: ~ {\rm In-Sample}$

Panel B: Out-Of-Sample \mathbb{R}^2

	MKT	SMB	HML	RMW	CMA
From 1980	34.77^{***}	17.73***	28.57***	18.7^{***}	22.95***
From 1990	40.25^{***}	18.02^{***}	29.95***	17.68^{***}	26.21***
From 2000	47.86^{***}	24.36^{***}	34.03^{***}	21.70^{***}	30.54^{***}

Outline

The Paper

My Comments

Final Remarks

- R² = 10% is a reasonable benchmark (upper bound in Ross (2015))
- Most OOS R² in the paper are not really OOS
- Cointegration residuals (*w_{j,t}*) are estimated in-sample:

Panel B: Out-Of-Sample R²

	MKT	SMB	HML	RMW	CMA
From 1980	34.77***	17.73***	28.57***	18.7***	22.95***
From 1990	40.25^{***}	18.02^{***}	29.95***	17.68^{***}	26.21***
From 2000	47.86^{***}	24.36^{***}	34.03^{***}	21.70^{***}	30.54^{***}

- $R^2 = 10\%$ is a reasonable benchmark (upper bound in Ross (2015))
- Most OOS R² in the paper are not really OOS
- Cointegration residuals (w_{j,t}) are estimated in-sample:

Panel B: Out-Of-Sample R²

	MKT	SMB	HML	RMW	CMA
From 1980	34.77***	17.73***	28.57***	18.7^{***}	22.95***
	40.25^{***}		29.95***	17.68^{***}	26.21***
From 2000	47.86***	24.36***	34.03^{***}	21.70^{***}	30.54^{***}

- R² = 10% is a reasonable benchmark (upper bound in Ross (2015))
- Most OOS R² in the paper are not really OOS
- Cointegration residuals (w_{j,t}) are estimated in-sample:

Panel B: Out-Of-Sample R²

	MKT	SMB	HML	RMW	CMA
	34.77***	17.73^{***}	28.57^{***}	18.7^{***}	22.95***
From 1990	40.25^{***}	18.02^{***}	29.95^{***}	17.68^{***}	26.21^{***}
From 2000	47.86^{***}	24.36^{***}	34.03^{***}	21.70^{***}	30.54^{***}

- R² = 10% is a reasonable benchmark (upper bound in Ross (2015))
- Most OOS R² in the paper are not really OOS
- Cointegration residuals (w_{j,t}) are estimated in-sample:

	MKT	SMB	HML	RMW	CMA
From 1980	34.77***	17.73***	28.57***	18.7***	22.95***
From 1990	40.25^{***}	18.02^{***}	29.95^{***}	17.68^{***}	26.21^{***}
	47.86***	24.36^{***}	34.03^{***}	21.70^{***}	30.54^{***}

Panel B: Out-Of-Sample \mathbb{R}^2

- R² = 10% is a reasonable benchmark (upper bound in Ross (2015))
- Most OOS R^2 in the paper are not really OOS
- Cointegration residuals (w_{i,t}) are estimated in-sample:

	MKT	SMB	HML	RMW	CMA
From 1980	34.77***	17.73***	28.57***	18.7***	22.95***
	40.25^{***}	18.02^{***}	29.95^{***}	17.68^{***}	26.21^{***}
From 2000	47.86***	24.36^{***}	34.03^{***}	21.70^{***}	30.54^{***}

Panel B: Out-Of-Sample \mathbb{R}^2

- R² = 10% is a reasonable benchmark (upper bound in Ross (2015))
- Most OOS R^2 in the paper are not really OOS
- Cointegration residuals (*w_{i,t}*) are estimated in-sample:

$$\ln F_{j,t} = \alpha_{0,j} + \alpha_{1,j} \cdot t + \beta'_{j} \ln M_{t} + w_{j,t}$$

• I estimated the trend model: $\ln F_{m,t} = \alpha_{0,m} + \alpha_{1,m} \cdot t + w_{m,t}$

• I estimated the trend model: $\ln F_{m,t} = \alpha_{0,m} + \alpha_{1,m} \cdot t + w_{m,t}$

- I estimated the trend model: $\ln F_{m,t} = \alpha_{0,m} + \alpha_{1,m} \cdot t + w_{m,t}$
- The *R*² values are as follows:

Years	$IS w + IS \mathbb{E}[r]$	$IS \ w + OOS \ \mathbb{E}[r]$	$OOS \ w + OOS \ \mathbb{E}[r]$
\geq 1968	11.7%		
\geq 1980	8.7%	6.1%	-58.7%
\geq 1990	11.2%	-4.9%	-50.1%
≥ 2000	19.1%	16.1%	-2.5%

In the paper, the analogous R² values are as follows:

- I estimated the trend model: $\ln F_{m,t} = \alpha_{0,m} + \alpha_{1,m} \cdot t + w_{m,t}$
- The R^2 values are as follows:

Years	$IS \ w + IS \ \mathbb{E}[r]$	$IS \ w + OOS \ \mathbb{E}[r]$	$OOS \ w + OOS \ \mathbb{E}[r]$
\geq 1968	11.7%		
\geq 1980	8.7%	6.1%	-58.7%
\geq 1990	11.2%	-4.9%	-50.1%
≥ 2000	19.1%	16.1%	-2.5%

• In the paper, the analogous R^2 values are as follows:

Years	$IS \ w + IS \ \mathbb{E}[r]$	IS $w + OOS \mathbb{E}[r]$	$OOS \ w + OOS \ \mathbb{E}[r]$
\geq 1968	30.7%		
\geq 1980	???	34.8%	???
\geq 1990	???	40.3%	???
≥ 2000	???	47.9%	29.4%

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation

• Challenge 2: Sample Starts in 1968

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation

• You can use a 1-step estimation (Lettau and Ludvigson, 2005):

• Challenge 2: Sample Starts in 1968

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

 $f_{j,t+1} = \alpha_{1,j} + \delta_j \cdot w_{j,t} + v_{j,t+1}$

 $= \alpha_{1,j} + \delta_j \cdot \left(\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot t - \beta_j \ln M_t \right) + v_{j,t+1}$

- $= \theta_{0,j} + \theta_{1,j} \cdot t + \theta_{2,j} \cdot \ln F_{j,t} + \theta_{3,j}' \ln M_t + v_{j,t+1}$
- Challenge 2: Sample Starts in 1968

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$f_{j,t+1} = \alpha_{1,j} + \delta_j \cdot w_{j,t} + v_{j,t+1}$$

 $= \alpha_{1,j} + \delta_j \cdot \left(\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot t - \beta_j \ln M_t \right) + v_{j,t+1}$

- $= \theta_{0,j} + \theta_{1,j} \cdot t + \theta_{2,j} \cdot \ln F_{j,t} + \theta_{3,j}^{'} \ln M_t + v_{j,t+1}$
- Challenge 2: Sample Starts in 1968

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - $\,\circ\,$ You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{aligned} f_{j,t+1} &= \alpha_{1,j} + \delta_j \cdot \mathbf{w}_{j,t} + \mathbf{v}_{j,t+1} \\ &= \alpha_{1,j} + \delta_j \cdot (\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot \mathbf{t} - \beta_j' \ln M_t) + \mathbf{v}_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot \mathbf{t} + \theta_{2,j} \cdot \ln F_{1,j} + \theta_{3,j} \ln M_t + \mathbf{v}_{j,t+1} \end{aligned}$$

• Challenge 2: Sample Starts in 1968

2) 1-Step OOS Estimation + Longer Sample

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{split} f_{j,t+1} &= \alpha_{1,j} + \delta_{j} \cdot \mathbf{w}_{j,t} + \mathbf{v}_{j,t+1} \\ &= \alpha_{1,j} + \delta_{j} \cdot (\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot t - \beta_{j}^{'} \ln M_{t}) + \mathbf{v}_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot t + \theta_{2,j} \cdot \ln F_{j,t} + \theta_{3,j}^{'} \ln M_{t} + \mathbf{v}_{j,t+1} \end{split}$$

• Challenge 2: Sample Starts in 1968

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{split} f_{j,t+1} &= \alpha_{1,j} + \delta_{j} \cdot \mathbf{w}_{j,t} + \mathbf{v}_{j,t+1} \\ &= \alpha_{1,j} + \delta_{j} \cdot (\ln \mathbf{F}_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot \mathbf{t} - \beta_{j}^{'} \ln M_{t}) + \mathbf{v}_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot \mathbf{t} + \theta_{2,j} \cdot \ln \mathbf{F}_{j,t} + \theta_{3,j}^{'} \ln M_{t} + \mathbf{v}_{j,t+1} \end{split}$$

- Challenge 2: Sample Starts in 1968
 - Start in 1920s but focus on FF3 model (FF5 and q4 in IA)
 - \circ Volatility proxy: liquidity factor ightarrow realized variance
 - $\circ~$ Inflation proxy: crude oil returns \rightarrow CPI growth
 - $\circ~$ Growth proxy: potential output growth \rightarrow GDP growth
 - Term Spread proxy: already available since 1920s

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{split} f_{j,t+1} &= \alpha_{1,j} + \delta_{j} \cdot \mathbf{w}_{j,t} + \mathbf{v}_{j,t+1} \\ &= \alpha_{1,j} + \delta_{j} \cdot (\ln \mathbf{F}_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot \mathbf{t} - \beta_{j}^{'} \ln M_{t}) + \mathbf{v}_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot \mathbf{t} + \theta_{2,j} \cdot \ln \mathbf{F}_{j,t} + \theta_{3,j}^{'} \ln M_{t} + \mathbf{v}_{j,t+1} \end{split}$$

- Challenge 2: Sample Starts in 1968
 - Start in 1920s but focus on FF3 model (FF5 and q4 in IA)
 - \circ Volatility proxy: liquidity factor ightarrow realized variance
 - $\circ~$ Inflation proxy: crude oil returns \rightarrow CPI growth
 - $\circ~$ Growth proxy: potential output growth \rightarrow GDP growth
 - Term Spread proxy: already available since 1920s

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{split} f_{j,t+1} &= \alpha_{1,j} + \delta_{j} \cdot \mathbf{w}_{j,t} + \mathbf{v}_{j,t+1} \\ &= \alpha_{1,j} + \delta_{j} \cdot (\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot \mathbf{t} - \beta_{j}^{'} \ln M_{t}) + \mathbf{v}_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot \mathbf{t} + \theta_{2,j} \cdot \ln F_{j,t} + \theta_{3,j}^{'} \ln M_{t} + \mathbf{v}_{j,t+1} \end{split}$$

- Challenge 2: Sample Starts in 1968
 - Start in 1920s but focus on FF3 model (FF5 and q4 in IA)
 - $\circ~$ Volatility proxy: liquidity factor \rightarrow realized variance
 - $\circ~$ Inflation proxy: crude oil returns \rightarrow CPI growth
 - $\circ~$ Growth proxy: potential output growth \rightarrow GDP growth
 - Term Spread proxy: already available since 1920s

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{split} f_{j,t+1} &= \alpha_{1,j} + \delta_{j} \cdot w_{j,t} + v_{j,t+1} \\ &= \alpha_{1,j} + \delta_{j} \cdot (\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot t - \beta_{j}^{'} \ln M_{t}) + v_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot t + \theta_{2,j} \cdot \ln F_{j,t} + \theta_{3,j}^{'} \ln M_{t} + v_{j,t+1} \end{split}$$

- Challenge 2: Sample Starts in 1968
 - Start in 1920s but focus on FF3 model (FF5 and q4 in IA)
 - $\circ~$ Volatility proxy: liquidity factor \rightarrow realized variance
 - $\circ~$ Inflation proxy: crude oil returns \rightarrow CPI growth
 - \circ Growth proxy: potential output growth ightarrow GDP growth
 - Term Spread proxy: already available since 1920s

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{split} f_{j,t+1} &= \alpha_{1,j} + \delta_{j} \cdot w_{j,t} + v_{j,t+1} \\ &= \alpha_{1,j} + \delta_{j} \cdot (\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot t - \beta_{j}^{'} \ln M_{t}) + v_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot t + \theta_{2,j} \cdot \ln F_{j,t} + \theta_{3,j}^{'} \ln M_{t} + v_{j,t+1} \end{split}$$

- Challenge 2: Sample Starts in 1968
 - Start in 1920s but focus on FF3 model (FF5 and q4 in IA)
 - $\circ~$ Volatility proxy: liquidity factor \rightarrow realized variance
 - $\circ~$ Inflation proxy: crude oil returns \rightarrow CPI growth
 - $\circ~$ Growth proxy: potential output growth \rightarrow GDP growth
 - Term Spread proxy: already available since 1920s

- Starting OOS analysis in 1980 is needed, but challenging
- Challenge 1: 2-step estimation
 - You can use a 1-step estimation (Lettau and Ludvigson, 2005):

$$\begin{split} f_{j,t+1} &= \alpha_{1,j} + \delta_{j} \cdot w_{j,t} + v_{j,t+1} \\ &= \alpha_{1,j} + \delta_{j} \cdot (\ln F_{j,t} - \alpha_{0,j} - \alpha_{1,j} \cdot t - \beta_{j}^{'} \ln M_{t}) + v_{j,t+1} \\ &= \theta_{0,j} + \theta_{1,j} \cdot t + \theta_{2,j} \cdot \ln F_{j,t} + \theta_{3,j}^{'} \ln M_{t} + v_{j,t+1} \end{split}$$

- Challenge 2: Sample Starts in 1968
 - Start in 1920s but focus on FF3 model (FF5 and q4 in IA)
 - $\circ~$ Volatility proxy: liquidity factor \rightarrow realized variance
 - $\circ~$ Inflation proxy: crude oil returns \rightarrow CPI growth
 - $\circ~$ Growth proxy: potential output growth \rightarrow GDP growth
 - Term Spread proxy: already available since 1920s

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the <u>real economy</u> in the long run."

• Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the <u>real economy</u>."

• Variables used to construct M_t

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the <u>real economy</u> in the long run."

Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the real economy."

• Variables used to construct M_t

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the real economy in the long run."

Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the real economy."

• Variables used to construct M_t

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the real economy in the long run."

Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the <u>real economy</u>."

• Variables used to construct M_t

1) Liquidity Factor Returns (Financial)

- 2) Crude Oil Returns (Mixed CPI would be Macro)
- 3) Potential Output Growth (Macro)
- 4) Term Spread (Financial)

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the real economy in the long run."

Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the real economy."

- Variables used to construct M_t
 - 1) Liquidity Factor Returns (Financial)
 - Crude Oil Returns (Mixed CPI would be Macro)
 - 3) Potential Output Growth (Macro)
 - 4) Term Spread (Financial)

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the real economy in the long run."

Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the real economy."

- Variables used to construct M_t
 - 1) Liquidity Factor Returns (Financial)
 - 2) Crude Oil Returns (Mixed CPI would be Macro)
 - 3) Potential Output Growth (Macro)
 - 4) Term Spread (Financial)

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the real economy in the long run."

Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the real economy."

- Variables used to construct M_t
 - 1) Liquidity Factor Returns (Financial)
 - 2) Crude Oil Returns (Mixed CPI would be Macro)
 - 3) Potential Output Growth (Macro)

4) Term Spread (Financial)

• First sentence:

"We document that the price of classical equity factors like HML is anchored to the real economy in the long run."

Last sentence:

Our evidence shows that by looking at asset prices together with returns may prove a fruitful way to link financial markets to the real economy."

- Variables used to construct M_t
 - 1) Liquidity Factor Returns (Financial)
 - 2) Crude Oil Returns (Mixed CPI would be Macro)
 - 3) Potential Output Growth (Macro)
 - 4) Term Spread (Financial)

Other Comments

1. Campbell & Thompson (2008) certainty equivalent fee:

$$\frac{1}{\gamma} \cdot \left(\frac{R^2}{1-R^2}\right) \cdot (1+SR^2) = \frac{1}{5} \cdot \left(\frac{0.348}{1-0.348}\right) \cdot (1+0.30^2) = 11.6\%$$

Your exercise (Haddad, Kozak, and Santosh, 2020) yield much lower certainty equivalent fee. Why (economically speaking)?

- 2. More analysis to identify the effect of each variable in M_t
- 3. Realized Volatility × Liquidity Factor as volatility proxy
- In Table 4, why is the dp R² so low when predicting 5-year returns? Could correct for M&A (see Gonçalves (2021)).
- 5. Robustness to state variables is important
 - One can have omitted stationary variables even if no omitted trend
 - Use first 4 or all 8 PCAs (do not select based on PCA interpretation)

Outline

The Paper

My Comments

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - $\circ~$ As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:
 - Use OOS cointegration residuals in OOS R²
 - Adjust OOS estimation and sample period so that we can analyse OOS results starting earlier (e.g., in 1980)
 - \circ Adjust M_t to match the macro motivation
- Good luck!

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:
 - $\,\circ\,$ Use OOS cointegration residuals in OOS R^2
 - Adjust OOS estimation and sample period so that we can analyse OOS results starting earlier (e.g., in 1980)
 - \circ Adjust M_t to match the macro motivation
- Good luck!

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:
 - $\,\circ\,$ Use OOS cointegration residuals in OOS R^2
 - Adjust OOS estimation and sample period so that we can analyse OOS results starting earlier (e.g., in 1980)
 - $\circ~$ Adjust M_t to match the macro motivation

Good luck!

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:
 - $\,\circ\,$ Use OOS cointegration residuals in OOS R^2
 - Adjust OOS estimation and sample period so that we can analyse OOS results starting earlier (e.g., in 1980)
 - Adjust M_t to match the macro motivation

Good luck!

- Very interesting paper with novel perspective on the link between asset prices and macroeconomic activity:
 - Financial prices correct towards a macro trend
 - As such, returns of standard factors are highly predictable
 - All one needs is the cointegration residual
- It would be useful to:
 - $\,\circ\,$ Use OOS cointegration residuals in OOS R^2
 - Adjust OOS estimation and sample period so that we can analyse OOS results starting earlier (e.g., in 1980)
 - Adjust M_t to match the macro motivation
- Good luck!