

Asset Pricing with Misallocation

Winston Wei Dou, Yan Ji, Di Tian, and Pengfei Wang

Discussant: Andrei S. Gonçalves

2022 MFA

Outline

The Paper

My Comments

Final Remarks

Influential long run risks literature:

Several papers endogenize x_t

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which

• Influential long run risks literature:

$$g_{t+1} = \mu + \mathbf{x}_t + \widetilde{g}_{t+1}$$

$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

Several papers endogenize x_t

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which

• Influential long run risks literature:

$$g_{t+1} = \mu + \mathbf{x}_t + \widetilde{g}_{t+1}$$

$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment
 - Productivity of innovation sector is exogenous
- Macro literature: misallocation affects economic growth
- This paper develops a framework in which

• Influential long run risks literature:

$$g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$$
$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment
 - Productivity of innovation sector is exogenous
- Macro literature: misallocation affects economic growth
- This paper develops a framework in which

• Influential long run risks literature:

$$g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$$
$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which

• Influential long run risks literature:

$$g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$$
$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which

• Influential long run risks literature:

$$g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$$
$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which
 - Financial frictions prevent optimal capital allocation
 - Capital misallocation endogenously affect R&D productivity
 - A persistent x_t arises as a consequence

• Influential long run risks literature:

$$g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$$
$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which
 - Financial frictions prevent optimal capital allocation
 - Capital misallocation endogenously affect R&D productivity
 - A persistent x_t arises as a consequence

• Influential long run risks literature:

$$g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$$
$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which
 - Financial frictions prevent optimal capital allocation
 - Capital misallocation endogenously affect R&D productivity
 - A persistent x_t arises as a consequence

• Influential long run risks literature:

$$g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$$
$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

- Several papers endogenize x_t
 - Kung and Schmid (2015) do it through R&D investment

- Macro literature: misallocation affects economic growth
- This paper develops a framework in which
 - Financial frictions prevent optimal capital allocation
 - Capital misallocation endogenously affect R&D productivity
 - A persistent x_t arises as a consequence

- Financial Frictions (equity & debt constraints):
 - ↑ in capital depreciation
 - \Rightarrow \uparrow in misallocation (productive firms use capital intensively)
 - $\Rightarrow \downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow \mathsf{profits} \mathsf{ from} \mathsf{ R\&D} \mathsf{ investments}$
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - ↑ in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - \Rightarrow \uparrow in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow \mathsf{profits} \mathsf{ from} \mathsf{ R\&D} \mathsf{ investments}$
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - ↑ in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - \Rightarrow \uparrow in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow profits from R\&D investments$
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - ↑ in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - ↑ in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - t in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

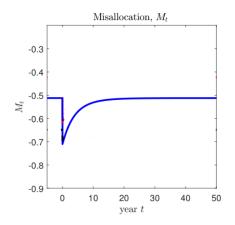
- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - t in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

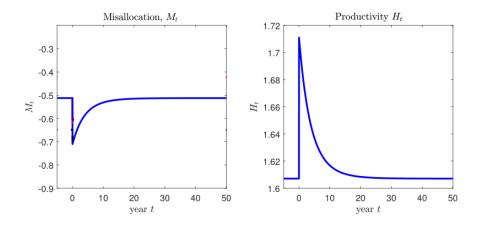
- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow\downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

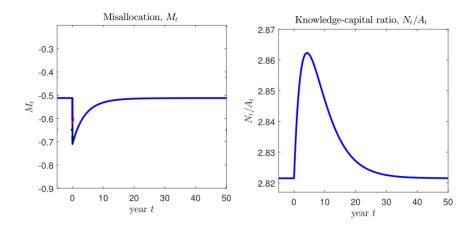
- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow\downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

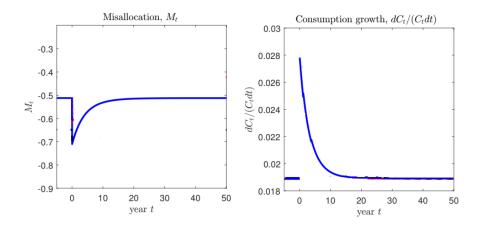
- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow\downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow \downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth


- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow \downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - \uparrow in capital depreciation


 \Rightarrow persistent \uparrow in misallocation


 \Rightarrow persistent \downarrow in expected growth


- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow \downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - \uparrow in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

- Financial Frictions (equity & debt constraints):
 - \uparrow in capital depreciation
 - $\Rightarrow\uparrow$ in misallocation (productive firms use capital intensively)
 - $\Rightarrow \downarrow$ in aggregate productivity of final goods sector
 - $\Rightarrow\downarrow$ in the demand for intermediate inputs
 - $\Rightarrow \downarrow$ profits from R&D investments
 - $\Rightarrow \downarrow$ less patent production
 - $\Rightarrow \downarrow$ lower endogenous growth
- Persistent idiosyncratic productivity:
 - \uparrow in capital depreciation
 - \Rightarrow persistent \uparrow in misallocation
 - \Rightarrow persistent \downarrow in expected growth

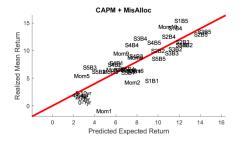
1965 - 2016

β

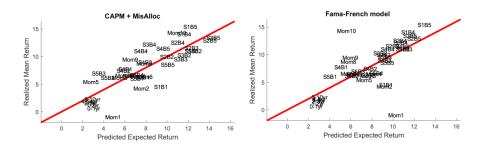
R-squared

1965 - 2016

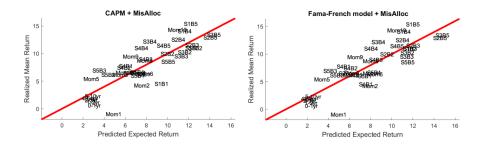
Misallocation and R&D intensity				
	. t			
β	-0.076			
	[-0.032]			
<i>R</i> -squared	0.102			

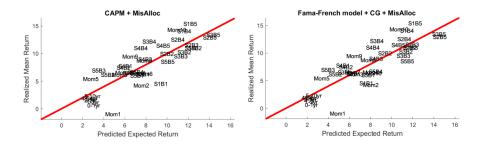

1965 - 2016

	Misallocation and R&D intensity	Consumption growth forecasts	
	, t .	$t \rightarrow t + 5$	
β	-0.076	-0.208	
	[-0.032]	[-0.066]	
R-squared	0.102	0.173	


1965 - 2016

	Misallocation and R&D intensity	Consumption growth forecasts	Output growth forecasts
	. t .	$t \rightarrow t + 5$	$t \rightarrow t + 5$
β	-0.076 [-0.032]	-0.208 [-0.066]	-0.216 [-0.083]
<i>R</i> -squared 0.102		0.173	0.123


Empirical Results: Pricing the Cross-Section


Empirical Results: Pricing the Cross-Section

Empirical Results: Pricing the Cross-Section

Empirical Results: Pricing the Cross-Section

Outline

The Paper

My Comments

My Comments

1) On the LRR Connection

• LRR model: $g_{t+1} = \mu + x_t + \tilde{g}_{t+1}$

$$x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$$

• In Bansal and Yaron (2004), $\mathbb{V}ar_t[\tilde{g}] = \sigma_t^2$ is also present

- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

- LRR model: $g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$ $x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$
- In Bansal and Yaron (2004), $\mathbb{V}ar_t[\widetilde{g}] = \sigma_t^2$ is also present
 - It helps with asset pricing implications
 - SR = 0.26 without σ_t and SR = 0.37 with σ_t
- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

- LRR model: $g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$ $x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$
- In Bansal and Yaron (2004), $\mathbb{V}ar_t[\tilde{g}] = \sigma_t^2$ is also present
 - It helps with asset pricing implications
 - SR = 0.26 without σ_t and SR = 0.37 with σ_t
- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

- LRR model: $g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$ $x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$
- In Bansal and Yaron (2004), $\mathbb{V}ar_t[\tilde{g}] = \sigma_t^2$ is also present
 - It helps with asset pricing implications
 - SR = 0.26 without σ_t and SR = 0.37 with σ_t
- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

- LRR model: $g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$ $x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$
- In Bansal and Yaron (2004), $\mathbb{V}ar_t[\tilde{g}] = \sigma_t^2$ is also present
 - It helps with asset pricing implications
 - SR = 0.26 without σ_t and SR = 0.37 with σ_t
- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

- LRR model: $g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$ $x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$
- In Bansal and Yaron (2004), $\mathbb{V}ar_t[\tilde{g}] = \sigma_t^2$ is also present
 - It helps with asset pricing implications
 - SR = 0.26 without σ_t and SR = 0.37 with σ_t
- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t ?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

- LRR model: $g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$ $x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$
- In Bansal and Yaron (2004), $\mathbb{V}ar_t[\tilde{g}] = \sigma_t^2$ is also present
 - It helps with asset pricing implications
 - SR = 0.26 without σ_t and SR = 0.37 with σ_t
- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

- LRR model: $g_{t+1} = \mu + x_t + \widetilde{g}_{t+1}$ $x_{t+1} = \rho \cdot x_t + \widetilde{x}_{t+1}$
- In Bansal and Yaron (2004), $\mathbb{V}ar_t[\tilde{g}] = \sigma_t^2$ is also present
 - It helps with asset pricing implications
 - SR = 0.26 without σ_t and SR = 0.37 with σ_t
- In your model, SR = 0.36. Does it come entirely from x_t ?
- Can you explore whether non-linearities create σ_t ?
- LRR also has well-known limitations (Beeler and Campbell 2012; Binsbergen, Brandt, and Koijen 2012; ...)
- Can you explore whether your endogenous LRR model alleviate these issues?

$$\frac{d\Lambda_t}{\Lambda_t} = -r_{f,t}dt - \eta_t dW_t$$

- In your model and empirical analysis, η_t < 0
 (↑ in aggregate depreciation/misallocation is bad news)
- But \uparrow misallocation $\Rightarrow \downarrow$ technology
- So, (embodied) "technology shocks" have positive price of risk (↓ in technology is bad news)
- Debate about the sign of the risk price of technology shocks (see the discussion in Garlappi and Song (2017))
- Your paper seems to contribute to this debate

$$\frac{d\Lambda_t}{\Lambda_t} = -r_{f,t}dt - \eta_t dW_t$$

- In your model and empirical analysis, η_t < 0
 (↑ in aggregate depreciation/misallocation is bad news)
- But \uparrow misallocation $\Rightarrow \downarrow$ technology
- So, (embodied) "technology shocks" have positive price of risk (↓ in technology is bad news)
- Debate about the sign of the risk price of technology shocks (see the discussion in Garlappi and Song (2017))
- Your paper seems to contribute to this debate

My Comments

$$\frac{d\Lambda_t}{\Lambda_t} = -r_{f,t}dt - \eta_t dW_t$$

- In your model and empirical analysis, η_t < 0
 (↑ in aggregate depreciation/misallocation is bad news)
- But \uparrow misallocation $\Rightarrow \downarrow$ technology
- So, (embodied) "technology shocks" have positive price of risk (\$\phi\$ in technology is bad news)
- Debate about the sign of the risk price of technology shocks (see the discussion in Garlappi and Song (2017))
- Your paper seems to contribute to this debate

$$\frac{d\Lambda_t}{\Lambda_t} = -r_{f,t}dt - \eta_t dW_t$$

- In your model and empirical analysis, η_t < 0
 (↑ in aggregate depreciation/misallocation is bad news)
- But \uparrow misallocation $\Rightarrow \downarrow$ technology
- So, (embodied) "technology shocks" have positive price of risk (↓ in technology is bad news)
- Debate about the sign of the risk price of technology shocks (see the discussion in Garlappi and Song (2017))
- Your paper seems to contribute to this debate

$$\frac{d\Lambda_t}{\Lambda_t} = -r_{f,t}dt - \eta_t dW_t$$

- In your model and empirical analysis, η_t < 0
 (↑ in aggregate depreciation/misallocation is bad news)
- But \uparrow misallocation $\Rightarrow \downarrow$ technology
- So, (embodied) "technology shocks" have positive price of risk (↓ in technology is bad news)
- Debate about the sign of the risk price of technology shocks (see the discussion in Garlappi and Song (2017))
- Your paper seems to contribute to this debate

$$\frac{d\Lambda_t}{\Lambda_t} = -r_{f,t}dt - \eta_t dW_t$$

- In your model and empirical analysis, η_t < 0
 (↑ in aggregate depreciation/misallocation is bad news)
- But \uparrow misallocation $\Rightarrow \downarrow$ technology
- So, (embodied) "technology shocks" have positive price of risk (↓ in technology is bad news)
- Debate about the sign of the risk price of technology shocks (see the discussion in Garlappi and Song (2017))
- Your paper seems to contribute to this debate

- Misallocation predicts long-run consumption growth (data)
- D/P does not predict long-run consumption growth (data)
- Misallocation is the key state variable (in the model)
- Can you show the connection between misallocation and D/P (in the model and data)?
- Can you show the D/P growth predictability? (in the model and data)?
- My worry is that D/P might be a good growth predictor in the model since misallocation likely drives D/P

- Misallocation predicts long-run consumption growth (data)
- D/P does not predict long-run consumption growth (data)
- Misallocation is the key state variable (in the model)
- Can you show the connection between misallocation and D/P (in the model and data)?
- Can you show the D/P growth predictability? (in the model and data)?
- My worry is that D/P might be a good growth predictor in the model since misallocation likely drives D/P

- Misallocation predicts long-run consumption growth (data)
- D/P does not predict long-run consumption growth (data)
- Misallocation is the key state variable (in the model)
- Can you show the connection between misallocation and D/P (in the model and data)?
- Can you show the D/P growth predictability? (in the model and data)?
- My worry is that D/P might be a good growth predictor in the model since misallocation likely drives D/P

- Misallocation predicts long-run consumption growth (data)
- D/P does not predict long-run consumption growth (data)
- Misallocation is the key state variable (in the model)
- Can you show the connection between misallocation and D/P (in the model and data)?
- Can you show the D/P growth predictability? (in the model and data)?
- My worry is that D/P might be a good growth predictor in the model since misallocation likely drives D/P

- Misallocation predicts long-run consumption growth (data)
- D/P does not predict long-run consumption growth (data)
- Misallocation is the key state variable (in the model)
- Can you show the connection between misallocation and D/P (in the model and data)?
- Can you show the D/P growth predictability? (in the model and data)?
- My worry is that D/P might be a good growth predictor in the model since misallocation likely drives D/P

- Misallocation predicts long-run consumption growth (data)
- D/P does not predict long-run consumption growth (data)
- Misallocation is the key state variable (in the model)
- Can you show the connection between misallocation and D/P (in the model and data)?
- Can you show the *D*/*P* growth predictability? (in the model and data)?
- My worry is that D/P might be a good growth predictor in the model since misallocation likely drives D/P

- Misallocation predicts long-run consumption growth (data)
- D/P does not predict long-run consumption growth (data)
- Misallocation is the key state variable (in the model)
- Can you show the connection between misallocation and D/P (in the model and data)?
- Can you show the D/P growth predictability? (in the model and data)?
- My worry is that D/P might be a good growth predictor in the model since misallocation likely drives D/P

Other Comments

- 1. Can you provide more asset pricing moments (e.g., $\mathbb{E}[r]$, σ , return predictability...)?
- 2. Can you focus on dividend claim (not consumption claim)?
- 3. The $MissAlloc_t$ HP filter should be 1-sided. Is it?
- "The aggregate TFP, which is exogenous in the model of Kung and Schmid (2015), is endogenous in our model"
 - I understand what you meant
 - But productivity is partially endogenous in their model
- 5. Should you add exogenous productivity shocks?
 - Hard to think about SDF that only has misallocation shock
 - The empirical analysis uses CAPM+Misallocation

Outline

The Paper

My Comments

- Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:
 - ↑ misallocation $\Rightarrow \downarrow R\&D$ investment $\Rightarrow \downarrow$ growth
 - If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:

• Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:

◦ ↑ misallocation $\Rightarrow \downarrow R\&D$ investment $\Rightarrow \downarrow$ growth

- If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:

- Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:
 - ↑ misallocation $\Rightarrow \downarrow R\&D$ investment $\Rightarrow \downarrow$ growth
 - If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:

- Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:
 - \uparrow misallocation $\Rightarrow \downarrow \mathsf{R}\&\mathsf{D}$ investment $\Rightarrow \downarrow$ growth
 - If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:
 - \circ Further explore the LRR connection (σ_t and LRR limitations)
 - · Highlight the positive risk price of technology shocks
 - \circ Explore D/P and its growth predictability in the model
- Good luck!

- Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:
 - \uparrow misallocation $\Rightarrow \downarrow \mathsf{R}\&\mathsf{D}$ investment $\Rightarrow \downarrow$ growth
 - If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:
 - Further explore the LRR connection (σ_t and LRR limitations)
 - Highlight the positive risk price of technology shocks
 - \circ Explore D/P and its growth predictability in the model

- Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:
 - ↑ misallocation $\Rightarrow \downarrow R\&D$ investment $\Rightarrow \downarrow$ growth
 - If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:
 - Further explore the LRR connection (σ_t and LRR limitations)
 - Highlight the positive risk price of technology shocks
 - Explore D/P and its growth predictability in the model

- Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:
 - ↑ misallocation $\Rightarrow \downarrow R\&D$ investment $\Rightarrow \downarrow$ growth
 - If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:
 - Further explore the LRR connection (σ_t and LRR limitations)
 - Highlight the positive risk price of technology shocks
 - Explore D/P and its growth predictability in the model

- Very interesting paper highlighting the importance of misallocation in determining long-run growth risk:
 - ↑ misallocation $\Rightarrow \downarrow R\&D$ investment $\Rightarrow \downarrow$ growth
 - If idiosyncratic productivity is persistent, then misallocation is persistent (as well as its growth effect)
- It would be useful to:
 - Further explore the LRR connection (σ_t and LRR limitations)
 - · Highlight the positive risk price of technology shocks
 - Explore D/P and its growth predictability in the model
- Good luck!