

Credit Market Equivalents and the Valuation of Private Firms

Niklas Hüther, Lukas Schmid, and Roberto Steri

Discussant: Andrei S. Gonçalves

2022 SFS Cavalcade

Outline

The Paper

My Comments

Final Remarks

• Liquid Assets:

- GPME: $M_t = exp\{a b'f_t\}$ where f_t are public market factors
- This Paper:

- Liquid Assets:
 - $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] 1$
- Private Equity:

- GPME: $M_t = exp\{a b'f_t\}$ where f_t are public market factors
- This Paper:

- Liquid Assets:
 - $\mathbf{1} = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] 1$
- Private Equity:

- GPME: $M_t = exp\{a b'f_t\}$ where f_t are public market factors
- This Paper:

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

- GPME: $M_t = exp\{a b'f_t\}$ where f_t are public market factors
- This Paper:

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

• Private Equity:

 $P_t = V_t \equiv \sum_{h=0}^{H} \mathbb{E}_t [M_{t \to t+h} \cdot CF_{t+h}] \qquad \Rightarrow \qquad \alpha_t = V_t - P_t$

• GPME: $M_t = exp\{a - b'f_t\}$ where f_t are public market factors

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

• Private Equity:

$$P_t = V_t \equiv \sum_{h=0}^{H} \mathbb{E}_t [M_{t \to t+h} \cdot CF_{t+h}] \qquad \Rightarrow \qquad \alpha_t = V_t - P_t$$

• GPME: $M_t = exp\{a - b'f_t\}$ where f_t are public market factors

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

• Private Equity:

$$P_t = V_t \equiv \sum_{h=0}^{H} \mathbb{E}_t [M_{t \to t+h} \cdot CF_{t+h}] \qquad \Rightarrow \qquad \alpha_t = V_t - P_t$$

• GPME: $M_t = exp\{a - b'f_t\}$ where f_t are public market factors

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

• Private Equity:

$$P_t = V_t \equiv \sum_{h=0}^{H} \mathbb{E}_t [M_{t \to t+h} \cdot CF_{t+h}] \qquad \Rightarrow \qquad \alpha_t = V_t - P_t$$

• GPME: $M_t = exp\{a - b'f_t\}$ where f_t are public market factors

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

$$P_t = V_t \equiv \sum_{h=0}^{H} \mathbb{E}_t[M_{t \to t+h} \cdot CF_{t+h}] \qquad \Rightarrow \qquad \alpha_t = V_t - P_t$$

- GPME: $M_t = exp\{a b'f_t\}$ where f_t are public market factors
- This Paper:
 - CME: Credit Market Equivalent
 - f_t that prices loans/bonds issued by firms held by PE funds (trading on secondary markets)

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

$$P_t = V_t \equiv \sum_{h=0}^{H} \mathbb{E}_t[M_{t \to t+h} \cdot CF_{t+h}] \qquad \Rightarrow \qquad \alpha_t = V_t - P_t$$

- GPME: $M_t = exp\{a b'f_t\}$ where f_t are public market factors
- This Paper:
 - CME: Credit Market Equivalent
 - f_t that prices loans/bonds issued by firms held by PE funds (trading on secondary markets)

• Liquid Assets:

 $1 = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] \qquad \Rightarrow \qquad \alpha_t = \mathbb{E}_t[M_{t+1} \cdot R_{t+1}] - 1$

$$\mathbf{P}_{t} = V_{t} \equiv \sum_{h=0}^{H} \mathbb{E}_{t}[M_{t \to t+h} \cdot CF_{t+h}] \qquad \Rightarrow \qquad \alpha_{t} = V_{t} - \mathbf{P}_{t}$$

- GPME: $M_t = exp\{a b'f_t\}$ where f_t are public market factors
- This Paper:
 - CME: Credit Market Equivalent
 - f_t that prices loans/bonds issued by firms held by PE funds (trading on secondary markets)

	А	ll PE dea	ls
	(1)	(2)	(3)
Log average bid price	2.189^{**} (0.529)	*	
Log average bid $\operatorname{price}_{t-1}$. ,	2.119^{**} (0.638)	*
Log average bid $\operatorname{price}_{t-4}$			2.413^{***} (0.395)
Loan maturity (yrs)	-0.100 (0.076)	-0.075^{*} (0.042)	-0.090 (0.067)
# of quotes	-0.087 (0.198)	(0.012) -0.259 (0.324)	(0.034) (0.285)
Portfolio size	(0.130) -0.000 (0.000)	(0.024) -0.000 (0.000)	(0.200) (0.000)
Fund vintage year FE	Yes	Yes	Yes
Observations Adj. R^2	$70 \\ 0.356$	$70 \\ 0.349$	$70 \\ 0.256$

Table 5: Realized equity- and traded loan performance

	А	ll PE deal	s
	(1)	(2)	(3)
Log average bid price	2.189^{**} (0.529)	*	
Log average bid $\operatorname{price}_{t-1}$		2.119^{**3} (0.638)	×
Log average bid $\operatorname{price}_{t-4}$			2.413^{***} (0.395)
Loan maturity (yrs)	-0.100	-0.075*	-0.090
# of quotes	$(0.076) \\ -0.087$	(0.042) - 0.259	$(0.067) \\ 0.034$
Portfolio size	(0.198) -0.000 (0.000)	(0.324) -0.000 (0.000)	(0.285) -0.000 (0.000)
Fund vintage year FE	(0.000) Yes	(0.000) Yes	(0.000) Yes
Observations Adj. R^2	$70 \\ 0.356$	$70 \\ 0.349$	$70 \\ 0.256$

Table 5: Realized equity- and traded loan performance

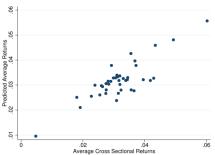
	1	2	3	4	5	5-1		1	2	3	4	5	5-1
Panel A: S	TM						Panel E:	Volatility					
AREW	0.04***	0.02	0.04***	0.04***	0.04***	-0.00	AREW	0.02***	0.03***	0.03***	0.04***	0.05**	0.02***
t-stats	3.62	1.56	4.55	6.53	4.01	-1.77	t-stats	6.73	5.77	3.57	2.93	2.37	3.07
ARVW	0.03***	0.03^{***}	0.03^{***}	0.04^{***}	0.03^{***}	0.00	ARVW	0.03***	0.03***	0.03^{***}	0.04^{***}	0.04^{***}	0.02***
t-stats	4.34	4.69	5.17	5.80	5.86	0.91	t-stats	6.82	5.72	5.12	4.05	3.48	4.03
Panel B: M	omentum						Panel F: C	Quotes					
AREW	0.01	0.03***	0.03***	0.03***	0.06***	0.05***	AREW	0.04***	0.03^{*}	0.03***	0.04***	0.03***	-0.01***
t-stats	0.29	3.99	5.57	4.35	5.68	6.38	t-stats	4.23	1.71	3.93	4.75	4.61	-3.52
ARVW	0.02^{*}	0.03^{***}	0.03***	0.03^{***}	0.05^{***}	0.03***	ARVW	0.04***	0.04***	0.03***	0.03***	0.03***	-0.01***
t-stats	1.82	4.69	5.66	5.35	6.15	8.23	t-stats	5.75	5.10	4.19	4.86	4.93	-4.61
Panel C: Pr	rice						Panel G: B	A-spread					
AREW	0.03	0.03***	0.03***	0.03***	0.03***	0.00	AREW	0.03***	0.03***	0.02	0.03**	0.05**	0.01**
t-stats	1.15	2.85	5.37	7.05	9.68	0.14	t-stats	8.32	6.91	1.45	2.78	2.63	2.40
ARVW	0.04***	0.03^{***}	0.03***	0.03^{***}	0.03^{***}	-0.01^{*}	ARVW	0.03***	0.03***	0.03***	0.03***	0.05***	0.02***
t-stats	3.00	3.02	5.58	7.08	14.53	-1.72	t-stats	9.43	5.84	4.43	3.57	3.67	3.49
Panel D: M	v						Panel H: S	ize					
AREW	0.04^{*}	0.04***	0.03***	0.03***	0.03***	-0.01	AREW	0.03***	0.03***	0.03***	0.04***	0.04***	0.01***
t-stats	1.69	3.91	4.76	4.47	5.31	-1.28	t-stats	3.75	3.35	3.43	5.18	3.89	3.26
ARVW	0.05^{***}	0.04^{***}	0.04^{***}	0.03^{***}	0.03^{***}	-0.02***	ARVW	0.04***	0.03***	0.03***	0.03***	0.03***	-0.00**
t-stats	4.23	4.46	5.33	5.45	5.57	-5.71	t-stats	4.95	5.57	5.04	6.05	7.02	-2.64

Table 11: Returns and characteristics of loan portfolios sorted on characteristics

	1	2	3	4	5	5-1		1	2	3	4	5	5-1
Panel A: S	\mathbf{TM}						Panel E: V	Volatility					
AREW	0.04***	0.02	0.04***	0.04***	0.04***	-0.00	AREW	0.02***	0.03***	0.03***	0.04***	0.05**	0.02***
t-stats	3.62	1.56	4.55	6.53	4.01	-1.77	t-stats	6.73	5.77	3.57	2.93	2.37	3.07
ARVW	0.03***	0.03***	0.03^{***}	0.04^{***}	0.03***	0.00	ARVW	0.03***	0.03***	0.03***	0.04^{***}	0.04***	0.02***
t-stats	4.34	4.69	5.17	5.80	5.86	0.91	t-stats	6.82	5.72	5.12	4.05	3.48	4.03
Panel B: M	omentum						Panel F: Q	uotes					
AREW	0.01	0.03***	0.03***	0.03***	0.06***	0.05***	AREW	0.04***	0.03^{*}	0.03***	0.04***	0.03***	-0.01***
t-stats	0.29	3.99	5.57	4.35	5.68	6.38	t-stats	4.23	1.71	3.93	4.75	4.61	-3.52
ARVW	0.02^{*}	0.03^{***}	0.03***	0.03^{***}	0.05^{***}	0.03***	ARVW	0.04***	0.04***	0.03***	0.03***	0.03***	-0.01***
t-stats	1.82	4.69	5.66	5.35	6.15	8.23	t-stats	5.75	5.10	4.19	4.86	4.93	-4.61
Panel C: Pr	ice						Panel G: B.	A-spread					
AREW	0.03	0.03***	0.03***	0.03***	0.03***	0.00	AREW	0.03***	0.03***	0.02	0.03**	0.05**	0.01**
t-stats	1.15	2.85	5.37	7.05	9.68	0.14	t-stats	8.32	6.91	1.45	2.78	2.63	2.40
ARVW	0.04^{***}	0.03^{***}	0.03***	0.03^{***}	0.03^{***}	-0.01*	ARVW	0.03***	0.03***	0.03***	0.03***	0.05***	0.02***
t-stats	3.00	3.02	5.58	7.08	14.53	-1.72	t-stats	9.43	5.84	4.43	3.57	3.67	3.49
Panel D: M	V						Panel H: Siz	ze					
AREW	0.04^{*}	0.04***	0.03***	0.03***	0.03***	-0.01	AREW	0.03***	0.03***	0.03***	0.04***	0.04***	0.01***
t-stats	1.69	3.91	4.76	4.47	5.31	-1.28	t-stats	3.75	3.35	3.43	5.18	3.89	3.26
ARVW	0.05^{***}	0.04^{***}	0.04^{***}	0.03^{***}	0.03^{***}	-0.02^{***}	ARVW	0.04***	0.03***	0.03***	0.03***	0.03***	-0.00**
t-stats	4.23	4.46	5.33	5.45	5.57	-5.71	t-stats	4.95	5.57	5.04	6.05	7.02	-2.64

Table 11: Returns and characteristics of loan portfolios sorted on characteristics

My Comments


Table 12: Cross-sectional regression of value weighted avg quarterly excess returns on the estimated betas from the first step $% \left({{{\rm{T}}_{\rm{T}}} \right)$

	(1)	
	rmrf	
	β / SE	
Q5mQ1_mom	0.018***	
	(0.004)	
Q5mQ1_vola	0.017***	
	(0.004)	
Q5mQ1_price	-0.014***	
	(0.003)	
Q5mQ1_MV	-0.014***	
	(0.003)	
Q5mQ1_BA	0.014***	
	(0.003)	
Observations	40	
Adj. R ²	0.596	

Table 12: Cross-sectional regression of value weighted avg quarterly excess returns on the estimated betas from the first step

	(1)	
	rmrf	
	β / SE	
Q5mQ1_mom	0.018***	
	(0.004)	
Q5mQ1_vola	0.017***	
	(0.004)	
Q5mQ1_price	-0.014***	
	(0.003)	
Q5mQ1_MV	-0.014***	
	(0.003)	
Q5mQ1_BA	0.014***	
	(0.003)	
Observations	40	
Adj. R ²	0.596	

Figure 1: Predicted Loan Returns and Actual Loan Returns

		(1)	(2)
		Preqin	Our Data
CME		-0.042	-0.023
		(0.243)	(0.148)
	$H_0: CME = 0$	[0.863]	[0.876]
GPME		0.205	0.428
		(0.296)	(0.310)
	$H_0: GPME = 0$	[0.490]	[0.168]
PME		0.062	0.399
		(0.053)	(0.115)
	$H_0: PME = 0$	[0.243]	[0.000]

Table 13: Valuation: Fund Portfolios

		(1)	(2)
		Preqin	Our Data
CME		-0.042	-0.023
OME		(0.243)	(0.148)
	$H_0: CME = 0$	[0.863]	[0.876]
	H_0 : $C M L = 0$	[0.000]	[0.070]
GPME		0.205	0.428
		(0.296)	(0.310)
	$H_0: GPME = 0$	[0.490]	[0.168]
	0		r 1
PME		0.062	0.399
		(0.053)	(0.115)
	$H_0: PME = 0$	[0.243]	[0.000]
	0	r -1	(J

Table 13:	Valuation:	Fund	Portfolios
-----------	------------	------	------------

			(-)
		(1)	(2)
		Preqin	Our Data
(1) (T)		0.010	
CME		-0.042	-0.023
		(0.243)	(0.148)
	$H_0: CME = 0$	[0.863]	[0.876]
	110 1 0 111 0	[0:000]	[0.010]
GPME		0.205	0.428
		(0.296)	(0.310)
	$H_0: GPME = 0$	[0.490]	[0.168]
DME		0.000	0.000
PME		0.062	0.399
		(0.053)	(0.115)
	$H_0: PME = 0$	[0.949]	[0,000]
	$m_0 \cdot r ME = 0$	[0.243]	[0.000]

Table 13:	Valuation:	Fund	Portfolios
-----------	------------	------	------------

		(1)	(2)
		Preqin	Our Data
CME		-0.042 (0.243)	-0.023 (0.148)
	$H_0: CME = 0$	[0.863]	[0.876]
GPME		0.205 (0.296)	0.428 (0.310)
	$H_0: GPME = 0$	[0.490]	[0.168]
PME		0.062 (0.053)	0.399 (0.115)
	$H_0: PME = 0$	[0.243]	[0.000]

Table 13:	Valuation:	Fund	Portfolios
-----------	------------	------	------------

Table 17:

Table 12: Cross-sectional regression of value weighted avg quarterly excess returns Cross-sectional regression of the avg quarterly excess loan returns the estimated betas from the first step

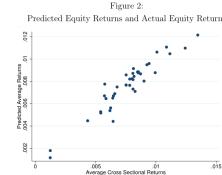
(1) $mrf \beta / SE$				
		β / SE		
Q5mQ1_mom	0.018***	Q5mQ1_mom	0.020***	
Q5mQ1_vola	(0.004) 0.017^{***}	$Q5mQ1_vola$	(0.003) 0.009*** (0.003)	
Q5mQ1_price	(0.004) -0.014*** (0.003)	$Q5mQ1_MV$	-0.005*** (0.002)	
$Q5mQ1_MV$	-0.014*** (0.003)	Q5mQ1_BA	0.005*** (0.002)	
Q5mQ1_BA	0.014*** (0.003)	Observations Adj. R^2	60 0.411	
Observations Adj. R ²	40 0.596			

of public companies on the estimated betas from the first step

The Paper

Table 19:

ross-sectional regression of the avg quarterly excess **equity returns** of companies with traded loans on the estimated betas from the first step


	β / SE
mmrf	-0.001
	(0.001)
smb	0.002***
	(0.000)
hml	0.004***
	(0.001)
rmw	0.003***
	(0.001)
cma	0.003***
	(0.001)
Q5mQ1_mom	0.003
	(0.004)
Q5mQ1_vola	0.009**
	(0.005)
Q5mQ1_price	-0.013**
	(0.005)
Q5mQ1_MV	-0.003
	(0.002)
Q5mQ1_BA	0.005
	(0.006)
Observations	40
Adj. R ²	0.712

The Paper

Table 19: ross-sectional regression of the avg quarterly excess equity returns of

companies with traded loans on the estimated betas from the first step

	β / SE	
mmrf	-0.001	
	(0.001)	
smb	0.002***	
	(0.000)	
hml	0.004***	
	(0.001)	
rmw	0.003***	
	(0.001)	
cma	0.003***	
	(0.001)	
Q5mQ1_mom	0.003	
	(0.004)	
Q5mQ1_vola	0.009**	
	(0.005)	
Q5mQ1_price	-0.013**	
	(0.005)	
Q5mQ1_MV	-0.003	
	(0.002)	
Q5mQ1_BA	0.005	
	(0.006)	
Observations	40	
Adj. R ²	0.712	

Outline

The Paper

My Comments

Final Remarks

• A lot of effort on ruling out market segmentation:

• The more important issue is weak factors

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - Other market segmentation results can go to the appendix
- The more important issue is weak factors

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - Other market segmentation results can go to the appendix
- The more important issue is weak factors

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - Other market segmentation results can go to the appendix
- The more important issue is weak factors

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - Other market segmentation results can go to the appendix
- The more important issue is weak factors

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - $\circ~$ Other market segmentation results can go to the appendix
- The more important issue is weak factors

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - Other market segmentation results can go to the appendix
- The more important issue is weak factors
 - Giglio, Xiu, and Zhang (2021)

• Some PE factors will not be priced within loan returns

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - Other market segmentation results can go to the appendix
- The more important issue is weak factors
 - Giglio, Xiu, and Zhang (2021)

• Some PE factors will not be priced within loan returns

- A lot of effort on ruling out market segmentation:
 - Core results start on Section 4 (Table 11)
 - I would keep one table about market segmentation
 - Maybe a table analogous to Table 16 (enter to exit returns)
 - Other market segmentation results can go to the appendix
- The more important issue is weak factors
 - Giglio, Xiu, and Zhang (2021)
 - Some PE factors will not be priced within loan returns

Current Private Equity Analysis

Current Public Equity Analysis (the "validation")

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans

• SDF is applied to price private equities

Current Public Equity Analysis (the "validation")

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - Estimate risk prices from public equities
 - SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - Estimate risk prices from public equities
 - SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - Estimate risk prices from public equities
 - SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - Estimate risk prices from public equities
 - SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - Estimate risk prices from public equities
 - SDF is applied to price price public equities

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - Estimate risk prices from public equities
 - SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis
 - Public Equity Analysis with loan risk factors only or
 - Private Equity Analysis with loan + equity risk factors

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - · Estimate risk prices from public equities
 - SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis
 - Public Equity Analysis with loan risk factors only or
 - Private Equity Analysis with loan + equity risk factors

- Current Private Equity Analysis
 - Identify risk factors from loans
 - Estimate risk prices from loans
 - SDF is applied to price private equities
- Current Public Equity Analysis (the "validation")
 - Identify risk factors from loans
 - Add loan risk factors to FF5 factors
 - · Estimate risk prices from public equities
 - SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis
 - Public Equity Analysis with loan risk factors only or
 - Private Equity Analysis with loan + equity risk factors

Current estimation of risk prices:

• Korteweg and Nagel (2016):

• Current estimation of risk prices:

Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

Estimate a to match investment on risk-free asset

• Korteweg and Nagel (2016):

• Current estimation of risk prices:

- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_t = exp\{a b'f_t\}$
- $\circ~$ Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify
$$M_t = exp\{a - b'f_t\}$$

 $\circ~$ Calibrate b based on a linear approximation

Estimate a to match investment on risk-free asset

• Korteweg and Nagel (2016):

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

- Specify $M_t = exp\{a b'f_t\}$
- Calibrate b based on a linear approximation

Estimate a to match investment on risk-free asset

• Korteweg and Nagel (2016):

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

- Specify $M_t = exp\{a b'f_t\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):

• Specify $M_t = exp\{a - b'f_t\}$

• Estimate a + b to match investments on r_f and risk factors

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):

• Specify
$$M_t = exp\{a - b'f_t\}$$

• Estimate a + b to match investments on r_f and risk factors

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):

• Specify
$$M_t = exp\{a - b'f_t\}$$

• Estimate a + b to match investments on r_f and risk factors

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

• Estimate a to match investment on risk-free asset

• Korteweg and Nagel (2016):

• Specify $M_t = exp\{a - b'f_t\}$

• Estimate a + b to match investments on r_f and risk factors

• I suggest you follow Korteweg and Nagel (2016) more closely:

Select risk factors from loans (+ potential equity factors)

• Specify $M_t = exp\{a - b'f_t\}$

• Estimate a + b to match investments on r_f and risk factors

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

• Estimate a to match investment on risk-free asset

• Korteweg and Nagel (2016):

• Specify $M_t = exp\{a - b'f_t\}$

• Estimate a + b to match investments on r_f and risk factors

- I suggest you follow Korteweg and Nagel (2016) more closely:
 - Select risk factors from loans (+ potential equity factors)

• Specify $M_t = exp\{a - b'f_t\}$

Estimate a + b to match investments on r_f and risk factors

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

• Estimate a to match investment on risk-free asset

• Korteweg and Nagel (2016):

• Specify $M_t = exp\{a - b'f_t\}$

• Estimate a + b to match investments on r_f and risk factors

• I suggest you follow Korteweg and Nagel (2016) more closely:

• Select risk factors from loans (+ potential equity factors)

• Specify
$$M_t = exp\{a - b'f_t\}$$

• Estimate a + b to match investments on r_f and risk factors

• Current estimation of risk prices:

• Select risk factors and estimate risk prices from loans (linear)

• Specify $M_t = exp\{a - b'f_t\}$

• Calibrate b based on a linear approximation

• Estimate a to match investment on risk-free asset

• Korteweg and Nagel (2016):

• Specify $M_t = exp\{a - b'f_t\}$

• Estimate a + b to match investments on r_f and risk factors

• I suggest you follow Korteweg and Nagel (2016) more closely:

• Select risk factors from loans (+ potential equity factors)

• Specify
$$M_t = exp\{a - b'f_t\}$$

• Estimate a + b to match investments on r_f and risk factors

 Clean up and condense the presentation of summary statistics (currently, four tables on that)

2. Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)

3. Add multiple factors in $M_t = exp\{a - b'f_t\}$ to test whether credit factors subsume "public factors"

4. Consider $M_t = exp\{a_{t-1} - b_{t-1}'f_t\}$ for robustness

 Clean up and condense the presentation of summary statistics (currently, four tables on that)

 Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)

3. Add multiple factors in $M_t = exp\{a - b'f_t\}$ to test whether credit factors subsume "public factors"

4. Consider $M_t = exp\{a_{t-1} - b_{t-1}^{'}f_t\}$ for robustness

1. Clean up and condense the presentation of summary statistics (currently, four tables on that)

2. Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)

3. Add multiple factors in $M_t = exp\{a - b'f_t\}$ to test whether credit factors subsume "public factors"

4. Consider $M_t = exp\{a_{t-1} - b_{t-1}^{'}f_t\}$ for robustness

1. Clean up and condense the presentation of summary statistics (currently, four tables on that)

2. Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)

3. Add multiple factors in $M_t = exp\{a - b'f_t\}$ to test whether credit factors subsume "public factors"

4. Consider $M_t = exp\{a_{t-1} - b_{t-1}^{'}f_t\}$ for robustness

1. Clean up and condense the presentation of summary statistics (currently, four tables on that)

2. Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)

3. Add multiple factors in $M_t = exp\{a - b'f_t\}$ to test whether credit factors subsume "public factors"

4. Consider $M_t = exp\{a_{t-1} - b_{t-1}'f_t\}$ for robustness

Outline

The Paper

My Comments

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - $\circ~$ Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - · Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:
 - Reduce the segmentation discussion
 - Have a discussion about weak factors
 - Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
 - $\circ~$ Adjust the estimation of risk prices
- Good luck!

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - · Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:
 - Reduce the segmentation discussion
 - Have a discussion about weak factors
 - Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
 - Adjust the estimation of risk prices
- Good luck!

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:
 - Reduce the segmentation discussion
 - Have a discussion about weak factors
 - Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
 - Adjust the estimation of risk prices
- Good luck!

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:
 - Reduce the segmentation discussion
 - Have a discussion about weak factors
 - Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
 - Adjust the estimation of risk prices

Good luck!

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:
 - Reduce the segmentation discussion
 - Have a discussion about weak factors
 - Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
 - Adjust the estimation of risk prices

Good luck!

- Very interesting and relevant paper:
 - It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
 - Logic: debt and equity are different claims on the same assets
 - Empirical Result: PEs have no alpha (on average)
- It would be useful to:
 - Reduce the segmentation discussion
 - Have a discussion about weak factors
 - Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
 - Adjust the estimation of risk prices
- Good luck!