Credit Market Equivalents and the Valuation of Private Firms

Niklas Hüther, Lukas Schmid, and Roberto Steri

Discussant: Andrei S. Gonçalves

Outline

The Paper

My Comments

Final Remarks

The Paper in a Nutshell

The Paper in a Nutshell

- Liquid Assets:

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]
$$

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

- Private Equity:

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

- Private Equity:

$$
P_{t}=V_{t} \equiv \sum_{h=0}^{H} \mathbb{E}_{t}\left[M_{t \rightarrow t+h} \cdot C F_{t+h}\right]
$$

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

- Private Equity:

$$
P_{t}=V_{t} \equiv \sum_{h=0}^{H} \mathbb{E}_{t}\left[M_{t \rightarrow t+h} \cdot C F_{t+h}\right] \quad \Rightarrow \quad \alpha_{t}=V_{t}-P_{t}
$$

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

- Private Equity:

$$
P_{t}=V_{t} \equiv \sum_{h=0}^{H} \mathbb{E}_{t}\left[M_{t \rightarrow t+h} \cdot C F_{t+h}\right] \quad \Rightarrow \quad \alpha_{t}=V_{t}-P_{t}
$$

- GPME: $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$ where f_{t} are public market factors

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

- Private Equity:

$$
P_{t}=V_{t} \equiv \sum_{h=0}^{H} \mathbb{E}_{t}\left[M_{t \rightarrow t+h} \cdot C F_{t+h}\right] \quad \Rightarrow \quad \alpha_{t}=V_{t}-P_{t}
$$

- GPME: $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$ where f_{t} are public market factors
- This Paper:

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

- Private Equity:

$$
P_{t}=V_{t} \equiv \sum_{h=0}^{H} \mathbb{E}_{t}\left[M_{t \rightarrow t+h} \cdot C F_{t+h}\right] \quad \Rightarrow \quad \alpha_{t}=V_{t}-P_{t}
$$

- GPME: $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$ where f_{t} are public market factors
- This Paper:
- CME: Credit Market Equivalent

The Paper in a Nutshell

- Liquid Assets:

$$
1=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right] \quad \Rightarrow \quad \alpha_{t}=\mathbb{E}_{t}\left[M_{t+1} \cdot R_{t+1}\right]-1
$$

- Private Equity:

$$
P_{t}=V_{t} \equiv \sum_{h=0}^{H} \mathbb{E}_{t}\left[M_{t \rightarrow t+h} \cdot C F_{t+h}\right] \quad \Rightarrow \quad \alpha_{t}=V_{t}-P_{t}
$$

- GPME: $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$ where f_{t} are public market factors
- This Paper:
- CME: Credit Market Equivalent
- f_{t} that prices loans/bonds issued by firms held by PE funds (trading on secondary markets)

Table 5: Realized equity- and traded loan performance

	All PE deals		
	(1)	(2)	(3)
Log average bid price	$2.189^{* * *}$		
	(0.529)		
Log average bid price ${ }_{t-1}$		$2.119^{* * *}$	
		(0.638)	
Log average bid price ${ }_{t-4}$			$2.413^{* * *}$
			(0.395)
Loan maturity (yrs)	-0.100	-0.075^{*}	-0.090
	(0.076)	(0.042)	(0.067)
\# of quotes	-0.087	-0.259	0.034
	(0.198)	(0.324)	(0.285)
Portfolio size	-0.000	-0.000	-0.000
	(0.000)	(0.000)	(0.000)
Fund vintage year FE	Yes	Yes	Yes
Observations	70	70	70
Adj. R^{2}	0.356	0.349	0.256

Table 5: Realized equity- and traded loan performance

	All PE deals		
	(1)	(2)	(3)
	$2.189^{* * *}$		
(0.529)			
Log average bid price		$2.119^{* * *}$	
		(0.638)	
Log average bid price ${ }_{t-1}$			$2.413^{* * *}$
Log average bid price ${ }_{t-4}$		(0.395)	
Loan maturity (yrs)	-0.100	-0.075^{*}	-0.090
	(0.076)	(0.042)	(0.067)
\# of quotes	-0.087	-0.259	0.034
	(0.198)	(0.324)	(0.285)
Portfolio size	-0.000	-0.000	-0.000
	(0.000)	(0.000)	(0.000)
Fund vintage year FE	Yes	Yes	Yes
Observations	70	70	70
Adj. R^{2}	0.356	0.349	0.256

Table 11: Returns and characteristics of loan portfolios sorted on characteristics

	1	2	3	4	5	5-1		1	2	3	4	5	5-1
Panel A		Panel E: Volatility											
AREW	$0.04{ }^{* * *}$	0.02	$0.04 * * *$	$0.04{ }^{* * *}$	$0.04^{* * *}$	-0.00	AREW	$0.02{ }^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.04{ }^{* * *}$	$0.05^{* *}$	$0.02^{* * *}$
t-stats	3.62	1.56	4.55	6.53	4.01	-1.77	t-stats	6.73	5.77	3.57	2.93	2.37	3.07
ARVW	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.04 * * *$	$0.03^{* * *}$	0.00	ARVW	$0.03^{* * *}$	$0.03^{* *}$	$0.03^{* * *}$	$0.04 * *$	$0.04^{* * *}$	$0.02^{* *}$
t-stats	4.34	4.69	5.17	5.80	5.86	0.91	t-stats	6.82	5.72	5.12	4.05	3.48	4.03

Panel B: Momentum

AREW	0.01	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.06^{* * *}$	$0.05^{* * *}$
t-stats	0.29	3.99	5.57	4.35	5.68	6.38
ARVW	0.02^{*}	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.05^{* * *}$	$0.03^{* * *}$
t-stats	1.82	4.69	5.66	5.35	6.15	8.23

Panel C: Price

AREW	0.03	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	0.00
t-stats	1.15	2.85	5.37	7.05	9.68	0.14
ARVW	$0.04^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	-0.01^{*}
t-stats	3.00	3.02	5.58	7.08	14.53	-1.72

Panel D: MV

AREW	0.04*	0.04***	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	-0.01	AREW	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* *}$	$0.04{ }^{* *}$	$0.04{ }^{* *}$	$0.01{ }^{* *}$
t-stats	1.69	3.91	4.76	4.47	5.31	-1.28	t-stats	3.75	3.35	3.43	5.18	3.89	3.26
ARVW	$0.05^{* * *}$	$0.04{ }^{* * *}$	$0.04 * *$	$0.03^{* * *}$	$0.03^{* * *}$	-0.02***	ARVW	$0.04{ }^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	0.03 ***	$0.03^{* *}$	$-0.00^{* *}$
t-stats	4.23	4.46	5.33	5.45	5.57	-5.71	t-stats	4.95	5.57	5.04	6.05	7.02	-2.64

Table 11: Returns and characteristics of loan portfolios sorted on characteristics

	1	2	3	4	5	5-1		1	2	3	4	5	5-1
Panel A: STM							Panel E: Volatility						
AREW	$0.04{ }^{* * *}$	0.02	$0.04^{* * *}$	$0.04 * * *$	$0.04^{* * *}$	-0.00	AREW	$0.02^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.04 * * *$	$0.05^{* *}$	$0.02^{* * *}$
t-stats	3.62	1.56	4.55	6.53	4.01	-1.77	t-stats	6.73	5.77	3.57	2.93	2.37	3.07
ARVW	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.04 * * *$	$0.03^{* * *}$	0.00	ARVW	$0.03^{* * *}$	0.03***	$0.03^{* * *}$	$0.04{ }^{* * *}$	$0.04{ }^{* * *}$	$0.02^{* * *}$
t-stats	4.34	4.69	5.17	5.80	5.86	0.91	t-stats	6.82	5.72	5.12	4.05	3.48	4.03

Panel B: Momentum

AREW	0.01	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.06^{* * *}$	$0.05 * * *$	AREW	$0.04{ }^{* * *}$	0.03^{*}	$0.03^{* * *}$	$0.04{ }^{* * *}$	$0.03^{* * *}$	$-0.01^{* * *}$
t-stats	0.29	3.99	5.57	4.35	5.68	6.38	t-stats	4.23	1.71	3.93	4.75	4.61	-3.52
ARVW	0.02*	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.05^{* * *}$	$0.03^{* * *}$	ARVW	0.04***	$0.04^{* *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* *}$	-0.01**
t-stats	1.82	4.69	5.66	5.35	6.15	8.23	t-stats	5.75	5.10	4.19	4.86	4.93	-4.61

Panel C: Price

AREW	0.03	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	0.00
t-stats	1.15	2.85	5.37	7.05	9.68	0.14
ARVW	$0.04^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	-0.01^{*}
t-stats	3.00	3.02	5.58	7.08	14.53	-1.72

Panel D: MV

AREW	0.04^{*}	$0.04^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	-0.01
t-stats	1.69	3.91	4.76	4.47	5.31	-1.28
ARVW	$0.05^{* * *}$	$0.04^{* * *}$	$0.04^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$-0.02^{* * *}$
t-stats	4.23	4.46	5.33	5.45	5.57	-5.71

Panel G: BA-spread

AREW	$0.03^{* * *}$	$0.03^{* * *}$	0.02	$0.03^{* *}$	$0.05^{* *}$	$0.01^{* *}$
t-stats	8.32	6.91	1.45	2.78	2.63	2.40
ARVW	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.05^{* * *}$	$0.02^{* * *}$
t-stats	9.43	5.84	4.43	3.57	3.67	3.49

Panel H: Size

AREW	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.04^{* * *}$	$0.04^{* * *}$	$0.01^{* * *}$
t-stats	3.75	3.35	3.43	5.18	3.89	3.26
ARVW	$0.04^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$0.03^{* * *}$	$-0.00^{* *}$
t-stats	4.95	5.57	5.04	6.05	7.02	-2.64

Table 12: Cross-sectional regression of value weighted avg quarterly excess returns on the estimated betas from the first step

	(1)
	rmif β / SE
Q5mQ1_mom	$0.018^{* * *}$
	(0.004)
Q5mQ1_vola	$0.017^{* * *}$
	(0.004)
Q5mQ1_price	$-0.014^{* * *}$
Q5mQ1_MV	(0.003)
	$-0.014^{* * *}$
Q5mQ1_BA	(0.003)
	$0.014^{* * *}$
Observations	(0.003)
Adj. R^{2}	40

Figure 1:
Table 12: Cross-sectional regression of value weighted avg quarterly excess returns on the estimated betas from the first step

	(1)
	rmrf
	β / SE
Q5mQ1_mom	$0.018^{* * *}$
	(0.004)
Q5mQ1_vola	$0.017^{* * *}$
	(0.004)
Q5mQ1_price	$-0.014^{* * *}$
	(0.003)
Q5mQ1_MV	$-0.014^{* * *}$
	(0.003)
Q5mQ1_BA	$0.014^{* * *}$
	(0.003)
Observations	40
Adj. R^{2}	0.596

Table 13: Valuation: Fund Portfolios

		(1)	(2)
		Preqin	Our Data
CME		$\begin{aligned} & -0.042 \\ & (0.243) \end{aligned}$	$\begin{gathered} -0.023 \\ (0.148) \end{gathered}$
	$H_{0}: C M E=0$	[0.863]	[0.876]
GPME		$\begin{gathered} 0.205 \\ (0.296) \end{gathered}$	$\begin{gathered} 0.428 \\ (0.310) \end{gathered}$
	$H_{0}: G P M E=0$	[0.490]	[0.168]
PME		$\begin{gathered} 0.062 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.399 \\ (0.115) \end{gathered}$
	$H_{0}: P M E=0$	[0.243]	[0.000]

Table 13: Valuation: Fund Portfolios

		(1)	(2)
		Preqin	Our Data
CME		-0.042	-0.023
		(0.243)	(0.148)
	$H_{0}: C M E=0$	[0.863]	[0.876]
GPME		$\begin{gathered} 0.205 \\ (0.296) \end{gathered}$	$\begin{gathered} 0.428 \\ (0.310) \end{gathered}$
	$H_{0}: G P M E=0$	[0.490]	[0.168]
PME		$\begin{gathered} 0.062 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.399 \\ (0.115) \end{gathered}$
	$H_{0}: P M E=0$	[0.243]	[0.000]

Table 13: Valuation: Fund Portfolios

		(1)	(2)
		Preqin	Our Data
CME		-0.042	-0.023
		(0.243)	(0.148)
	$H_{0}: C M E=0$	[0.863]	[0.876]
GPME		0.205	0.428
PME		(0.296)	(0.310)
	$H_{0}: G P M E=0$	[0.490]	[0.168]
		$\begin{gathered} 0.062 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.399 \\ (0.115) \end{gathered}$
	$H_{0}: P M E=0$	[0.243]	[0.000]

Table 13: Valuation: Fund Portfolios

		(1)	(2)
		Preqin	Our Data
CME		-0.042	-0.023
		(0.243)	(0.148)
	$H_{0}: C M E=0$	[0.863]	[0.876]
GPME		0.205	0.428
		(0.296)	(0.310)
	$H_{0}: G P M E=0$	[0.490]	[0.168]
PME		0.062	0.399
		(0.053)	(0.115)
	$H_{0}: P M E=0$	[0.243]	[0.000]

Table 17:

Table 12: Cross-sectional regression of value weighted avg quarterly excess returns the estimated betas from the first step

	(1)
	rmmf
	β / SE
Q5mQ1_mom	$0.018^{* * *}$
	(0.004)
Q5mQ1_vola	$0.017^{* * *}$
	(0.004)
Q5mQ1_price	$-0.014^{* * *}$
	(0.003)
Q5mQ1_MV	$-0.014^{* * *}$
	(0.003)
Q5mQ1_BA	$0.014^{* * *}$
	(0.003)
Observations	40
Adj. R^{2}	0.596

Cross-sectional regression of the avg quarterly excess loan returns of public companies on the estimated betas from the first step

	β / SE
Q5mQ1_mom	$0.020^{* * *}$
Q5mQ1_vola	(0.003)
	$0.009^{* * *}$
Q5mQ1_MV	(0.003)
	$-0.005^{* * *}$
Q5mQ1_BA	(0.002)
	$0.005^{* * *}$
Observations	(0.002)
Adj. R^{2}	60

Table 19:
ross-sectional regression of the avg quarterly excess equity returns of companies with traded loans on the estimated betas from the first step

	β / SE
mmrf	-0.001
smb	(0.001)
hml	$0.002^{* * *}$
mm	(0.000)
	$0.004^{* * *}$
cma	(0.001)
	$0.003^{* * *}$
Q5mQ1_mom	(0.001)
	$0.003^{* * *}$
Q5mQ1_vola	(0.001)
	0.003
Q5mQ1_price	(0.004)
	$0.009^{* *}$
Q5mQ1_MV	(0.005)
	$-0.013^{* *}$
Q5mQ1 BA	(0.005)
	-0.003
Observations	(0.002)
Adj. R^{2}	0.005

Table 19:
ross-sectional regression of the avg quarterly excess equity returns of companies with traded loans on the estimated betas from the first step

	β / SE
mmrf	-0.001
smb	(0.001)
	$0.002^{* * *}$
hml	(0.000)
mw	$0.004^{* * *}$
	(0.001)
cma	$0.003^{* * *}$
	(0.001)
Q5mQ1_mom	$0.003^{* * *}$
	(0.001)
Q5mQ1_vola	0.003
	(0.004)
Q5mQ1_price	$0.009^{* *}$
	(0.005)
Q5mQ1_MV	$-0.013^{* *}$
	(0.005)
Q5mQ1 BA	-0.003
	(0.002)
Observations	0.005
Adj. R^{2}	(0.006)

Figure 2:
Predicted Equity Returns and Actual Equity Return

Outline

The Paper

My Comments

Final Remarks

1) Segmentation vs Weak Factors

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:
- Core results start on Section 4 (Table 11)

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:
- Core results start on Section 4 (Table 11)
- I would keep one table about market segmentation

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:
- Core results start on Section 4 (Table 11)
- I would keep one table about market segmentation
- Maybe a table analogous to Table 16 (enter to exit returns)

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:
- Core results start on Section 4 (Table 11)
- I would keep one table about market segmentation
- Maybe a table analogous to Table 16 (enter to exit returns)
- Other market segmentation results can go to the appendix

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:
- Core results start on Section 4 (Table 11)
- I would keep one table about market segmentation
- Maybe a table analogous to Table 16 (enter to exit returns)
- Other market segmentation results can go to the appendix
- The more important issue is weak factors

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:
- Core results start on Section 4 (Table 11)
- I would keep one table about market segmentation
- Maybe a table analogous to Table 16 (enter to exit returns)
- Other market segmentation results can go to the appendix
- The more important issue is weak factors
- Giglio, Xiu, and Zhang (2021)

1) Segmentation vs Weak Factors

- A lot of effort on ruling out market segmentation:
- Core results start on Section 4 (Table 11)
- I would keep one table about market segmentation
- Maybe a table analogous to Table 16 (enter to exit returns)
- Other market segmentation results can go to the appendix
- The more important issue is weak factors
- Giglio, Xiu, and Zhang (2021)
- Some PE factors will not be priced within loan returns

2) Addressing Weak Factors

2) Addressing Weak Factors

- Current Private Equity Analysis

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")
- Identify risk factors from loans

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")
- Identify risk factors from loans
- Add loan risk factors to FF5 factors

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")
- Identify risk factors from loans
- Add loan risk factors to FF5 factors
- Estimate risk prices from public equities

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")
- Identify risk factors from loans
- Add loan risk factors to FF5 factors
- Estimate risk prices from public equities
- SDF is applied to price price public equities

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")
- Identify risk factors from loans
- Add loan risk factors to FF5 factors
- Estimate risk prices from public equities
- SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")
- Identify risk factors from loans
- Add loan risk factors to FF5 factors
- Estimate risk prices from public equities
- SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis
- Public Equity Analysis with loan risk factors only or

2) Addressing Weak Factors

- Current Private Equity Analysis
- Identify risk factors from loans
- Estimate risk prices from loans
- SDF is applied to price price private equities
- Current Public Equity Analysis (the "validation")
- Identify risk factors from loans
- Add loan risk factors to FF5 factors
- Estimate risk prices from public equities
- SDF is applied to price price public equities
- Addressing weak factors: match validation to actual analysis
- Public Equity Analysis with loan risk factors only or
- Private Equity Analysis with loan + equity risk factors

3) Estimating Risk Prices

3) Estimating Risk Prices

- Current estimation of risk prices:

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Estimate $a+b$ to match investments on r_{f} and risk factors

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Estimate $a+b$ to match investments on r_{f} and risk factors
- I suggest you follow Korteweg and Nagel (2016) more closely:

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Estimate $a+b$ to match investments on r_{f} and risk factors
- I suggest you follow Korteweg and Nagel (2016) more closely:
- Select risk factors from loans (+ potential equity factors)

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Estimate $a+b$ to match investments on r_{f} and risk factors
- I suggest you follow Korteweg and Nagel (2016) more closely:
- Select risk factors from loans (+ potential equity factors)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$

3) Estimating Risk Prices

- Current estimation of risk prices:
- Select risk factors and estimate risk prices from loans (linear)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Calibrate b based on a linear approximation
- Estimate a to match investment on risk-free asset
- Korteweg and Nagel (2016):
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Estimate $a+b$ to match investments on r_{f} and risk factors
- I suggest you follow Korteweg and Nagel (2016) more closely:
- Select risk factors from loans (+ potential equity factors)
- Specify $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$
- Estimate $a+b$ to match investments on r_{f} and risk factors

Other Comments

Other Comments

1. Clean up and condense the presentation of summary statistics (currently, four tables on that)

Other Comments

1. Clean up and condense the presentation of summary statistics (currently, four tables on that)
2. Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)

Other Comments

1. Clean up and condense the presentation of summary statistics (currently, four tables on that)
2. Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)
3. Add multiple factors in $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$ to test whether credit factors subsume "public factors"

Other Comments

1. Clean up and condense the presentation of summary statistics (currently, four tables on that)
2. Consider how to address the selection issue (i.e., the credit factors are based on a very special group of private firms)
3. Add multiple factors in $M_{t}=\exp \left\{a-b^{\prime} f_{t}\right\}$ to test whether credit factors subsume "public factors"
4. Consider $M_{t}=\exp \left\{a_{t-1}-b_{t-1}^{\prime} f_{t}\right\}$ for robustness

Outline

The Paper

My Comments

Final Remarks

Final Remarks

- Very interesting and relevant paper:

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets
- Empirical Result: PEs have no alpha (on average)

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets
- Empirical Result: PEs have no alpha (on average)
- It would be useful to:

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets
- Empirical Result: PEs have no alpha (on average)
- It would be useful to:
- Reduce the segmentation discussion

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets
- Empirical Result: PEs have no alpha (on average)
- It would be useful to:
- Reduce the segmentation discussion
- Have a discussion about weak factors

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets
- Empirical Result: PEs have no alpha (on average)
- It would be useful to:
- Reduce the segmentation discussion
- Have a discussion about weak factors
- Add public equity factors when pricing PEs
(it partially addresses the weak factors issue)

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets
- Empirical Result: PEs have no alpha (on average)
- It would be useful to:
- Reduce the segmentation discussion
- Have a discussion about weak factors
- Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
- Adjust the estimation of risk prices

Final Remarks

- Very interesting and relevant paper:
- It constructs an SDF from risk factors affecting loans of private firms to price the equity of private firms
- Logic: debt and equity are different claims on the same assets
- Empirical Result: PEs have no alpha (on average)
- It would be useful to:
- Reduce the segmentation discussion
- Have a discussion about weak factors
- Add public equity factors when pricing PEs (it partially addresses the weak factors issue)
- Adjust the estimation of risk prices
- Good luck!

