International Arbitrage Premia

Mirela Sandulescu and Paul Schneider

Discussant: Andrei S. Gonçalves

2022 WSIR

Outline

The Paper

My Comments

Final Remarks

The Paper in a Nutshell

The Paper in a Nutshell

- Linear SDF: $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$

The Paper in a Nutshell

- Linear SDF: $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- Estimate from $\mathbb{E}_{t}\left[M_{t+1}^{\star}\right]=1 / R_{f, t+1}$ and $\mathbb{E}_{t}\left[M_{t+1}^{\star} r_{t+1}\right]=0$

The Paper in a Nutshell

- Linear SDF: $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- Estimate from $\mathbb{E}_{t}\left[M_{t+1}^{\star}\right]=1 / R_{f, t+1}$ and $\mathbb{E}_{t}\left[M_{t+1}^{\star} r_{t+1}\right]=0$
- Problem: sometimes implies $M_{t}^{\star}<0$

The Paper in a Nutshell

- Linear SDF: $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- Estimate from $\mathbb{E}_{t}\left[M_{t+1}^{\star}\right]=1 / R_{f, t+1}$ and $\mathbb{E}_{t}\left[M_{t+1}^{\star} r_{t+1}\right]=0$
- Problem: sometimes implies $M_{t}^{\star}<0$
- Polynomial SDF: $M_{t+1}=w_{0, t}+w_{1, t} \cdot r_{t+1}+w_{2, t} \cdot r_{t+1}^{2}+\ldots$

The Paper in a Nutshell

- Linear SDF: $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- Estimate from $\mathbb{E}_{t}\left[M_{t+1}^{\star}\right]=1 / R_{f, t+1}$ and $\mathbb{E}_{t}\left[M_{t+1}^{\star} r_{t+1}\right]=0$
- Problem: sometimes implies $M_{t}^{\star}<0$
- Polynomial SDF: $M_{t+1}=w_{0, t}+w_{1, t} \cdot r_{t+1}+w_{2, t} \cdot r_{t+1}^{2}+\ldots$
- Estimate from

$$
\begin{aligned}
& \text { Minimize } \mathbb{E}_{t}\left[M_{t+1}^{2}\right] \\
& \text { s.t. } \quad \mathbb{E}_{t}\left[M_{t+1}\right]=1 / R_{f, t+1} \\
& \mathbb{E}_{t}\left[M_{t+1} r_{t+1}\right]=0 \\
& M_{t}>0
\end{aligned}
$$

The Paper in a Nutshell

- Linear SDF: $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- Estimate from $\mathbb{E}_{t}\left[M_{t+1}^{\star}\right]=1 / R_{f, t+1}$ and $\mathbb{E}_{t}\left[M_{t+1}^{\star} r_{t+1}\right]=0$
- Problem: sometimes implies $M_{t}^{\star}<0$
- Polynomial SDF: $M_{t+1}=w_{0, t}+w_{1, t} \cdot r_{t+1}+w_{2, t} \cdot r_{t+1}^{2}+\ldots$
- Estimate from

$$
\begin{aligned}
& \text { Minimize } \mathbb{E}_{t}\left[M_{t+1}^{2}\right] \\
& \text { s.t. } \quad \mathbb{E}_{t}\left[M_{t+1}\right]=1 / R_{f, t+1} \\
& \mathbb{E}_{t}\left[M_{t+1} r_{t+1}\right]=0 \\
& M_{t}>0
\end{aligned}
$$

- Study the Residual Mispricing: $R M P_{t+1}=M_{t+1}^{o}-\mathbb{E}_{t}\left[M_{t+1}^{o 2}\right]$ where $M_{t}^{o}=M_{t}-M_{t}^{\star}$

Figure 1: Time series of international residual mispricing

Table 1: Determinants of RMP

Panel A: U.S. Residual Mispricing						
Financial uncertainty	$\begin{gathered} 0.441^{\star \star \star} \\ {[0.086]} \end{gathered}$				$\begin{gathered} 0.392^{\star \star \star} \\ {[0.063]} \end{gathered}$	
VIX		$\begin{gathered} 0.500^{\star \star \star} \\ {[0.112]} \end{gathered}$				$\begin{gathered} 0.490^{\star \star \star} \\ {[0.103]} \end{gathered}$
Intermediary leverage			$\begin{gathered} 0.234^{\star \star \star} \\ {[0.073]} \end{gathered}$		$\begin{gathered} 0.056 \\ {[0.049]} \end{gathered}$	$\begin{gathered} -0.006 \\ {[0.058]} \end{gathered}$
TED spread				$\begin{aligned} & 0.258^{\star \star} \\ & {[0.127]} \end{aligned}$	$\begin{gathered} 0.132 \\ {[0.095]} \end{gathered}$	$\begin{gathered} 0.082 \\ {[0.080]} \end{gathered}$
R^{2}	19.2\%	24.9\%	5.3\%	6.5\%	21.8\%	26.8\%
Panel B: International Residual Mispricing						
Financial uncertainty	$\begin{gathered} 0.445^{\star \star \star} \\ {[0.095]} \end{gathered}$				$\begin{gathered} 0.396^{\star \star \star} \\ {[0.069]} \end{gathered}$	
VIX		$\begin{gathered} 0.506^{\star \star \star} \\ {[0.138]} \end{gathered}$				$\begin{gathered} 0.494^{\star \star \star} \\ {[0.126]} \end{gathered}$
Intermediary leverage			$\begin{gathered} 0.206^{\star \star \star} \\ {[0.072]} \end{gathered}$		$\begin{gathered} 0.016 \\ {[0.050]} \end{gathered}$	$\begin{gathered} -0.047 \\ {[0.062]} \end{gathered}$
TED spread				$\begin{aligned} & 0.289^{\star \star} \\ & {[0.140]} \end{aligned}$	$\begin{gathered} 0.173 \\ {[0.112]} \end{gathered}$	$\begin{gathered} 0.123 \\ {[0.090]} \end{gathered}$
R^{2}	19.6\%	25.4\%	4.0\%	8.2\%	22.6\%	27.7\%

Table 1: Determinants of RMP

Table 5: RMP and statistical arbitrage in the data
Panel A: Contemporaneous regressions

	U.S. Residual Mispricing							
	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.331^{*}	0.320^{*}	$0.302{ }^{\text {** }}$	0.361 **	$0.348^{\star \star}$	$0.331^{\star \star \star}$	$0.255^{\star \star \star}$	$0.190^{\star \star \star}$
	[0.171]	[0.195]	[0.132]	[0.145]	[0.141]	[0.121]	[0.099]	[0.069]
R^{2}	10.7\%	9.8\%	8.7\%	12.7\%	11.8\%	10.6\%	6.1\%	3.2\%
International Residual Mispricing								
	MDI	CIP 3M	CIP 1Y	CIP 2 Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.285*	0.267	0.245*	$0.318^{* *}$	$0.319^{* *}$	$0.296{ }^{* *}$	$0.222^{\text {** }}$	$0.178^{* * *}$
	[0.148]	[0.201]	[0.143]	[0.150]	[0.141]	[0.123]	[0.098]	[0.069]
R^{2}	7.8\%	6.8\%	5.6\%	9.8\%	9.8\%	8.4\%	4.5\%	2.8\%

Panel B: Predictive regressions

	U.S. Residual Mispricing							
	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	$0.301^{\star \star}$	0.231	$0.350^{\star \star}$	$0.399^{\star \star \star}$	$0.384^{\star \star}$	$0.368^{\star \star \star}$	$0.279^{\star \star \star}$	$0.210^{\star \star \star}$
	$[0.139]$	$[0.173]$	$[0.152]$	$[0.161]$	$[0.152]$	$[0.129]$	$[0.098]$	$[0.067]$
R^{2}	8.7%	5.0%	11.9%	15.5%	14.4%	13.2%	7.4%	4.0%

International Residual Mispricing

	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	$0.275^{\star \star}$	0.213	0.283^{\star}	$0.349^{\star \star}$	$0.350^{\star \star}$	$0.329^{\star \star}$	$0.237^{\star \star}$	$0.197^{\star \star \star}$
	$[0.130]$	$[0.172]$	$[0.161]$	$[0.167]$	$[0.156]$	$[0.131]$	$[0.099]$	$[0.067]$
R^{2}	7.3%	4.1%	7.6%	11.8%	11.9%	10.5%	5.2%	3.5%

Table 5: RMP and statistical arbitrage in the data

	Panel A: Contemporaneous regressions							
	U.S. Residual Mispricing							
	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.331*	0.320^{*}	$0.302^{\text {** }}$	$0.361{ }^{\text {** }}$	$0.348^{\text {** }}$	$0.331^{\star \star \star}$	$0.255^{\star \star \star}$	$0.190^{* * *}$
	[0.171]	[0.195]	[0.132]	[0.145]	[0.141]	[0.121]	[0.099]	[0.069]
R^{2}	10.7\%	9.8\%	8.7\%	12.7\%	11.8\%	10.6\%	6.1\%	3.2\%
International Residual Mispricing								
MDI		CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.285*	0.267	0.245^{*}	$0.318^{* *}$	0.319**	0.296**	$0.222^{\text {** }}$	$0.178^{\star * *}$
	[0.148]	[0.201]	[0.143]	[0.150]	[0.141]	[0.123]	[0.098]	[0.069]
R^{2}	7.8\%	6.8\%	5.6\%	9.8\%	9.8\%	8.4\%	4.5\%	2.8\%
Panel B: Predictive regressions								
U.S. Residual Mispricing								
	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.301 **	0.231	$0.350^{\star \star}$	$0.399^{* * *}$	$0.384^{\star \star}$	$0.368^{* \star *}$	$0.279^{\star \star \star}$	$0.210^{* * *}$
	[0.139]	[0.173]	[0.152]	[0.161]	[0.152]	[0.129]	[0.098]	[0.067]
R^{2}	8.7\%	5.0\%	11.9\%	15.5\%	14.4\%	13.2\%	7.4\%	4.0\%
	International Residual Mispricing							
	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	$0.275^{* *}$	0.213	0.283 *	$0.349^{\star \star}$	$0.350^{\text {** }}$	$0.329^{\star \star}$	$0.237^{\star \star}$	$0.197^{\star \star \star}$
	[0.130]	[0.172]	[0.161]	[0.167]	[0.156]	[0.131]	[0.099]	[0.067]
R^{2}	7.3\%	4.1\%	7.6\%	11.8\%	11.9\%	10.5\%	5.2\%	3.5\%

Table 5: RMP and statistical arbitrage in the data
Panel A: Contemporaneous regressions

	U.S. Residual Mispricing							
	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.331^{\star}	0.320^{\star}	$0.302^{\star \star}$	$0.361^{\star \star}$	$0.348^{\star \star}$	$0.331^{\star \star \star}$	$0.255^{\star \star \star}$	$0.190^{\star \star \star}$
	$[0.171]$	$[0.195]$	$[0.132]$	$[0.145]$	$[0.141]$	$[0.121]$	$[0.099]$	$[0.069]$
R^{2}	10.7%	9.8%	8.7%	12.7%	11.8%	10.6%	6.1%	3.2%

International Residual Mispricing

	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.285^{\star}	0.267	0.245^{\star}	$0.318^{\star \star}$	$0.319^{\star \star}$	$0.296^{\star \star}$	$0.222^{\star \star}$	$0.178^{\star \star \star}$
	$[0.148]$	$[0.201]$	$[0.143]$	$[0.150]$	$[0.141]$	$[0.123]$	$[0.098]$	$[0.069]$
R^{2}	7.8%	6.8%	5.6%	9.8%	9.8%	8.4%	4.5%	2.8%

Panel B: Predictive regressions

	U.S. Residual Mispricing							
	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	$0.301^{\star \star}$	0.231	$0.350^{\star \star}$	$0.399^{\star \star \star}$	$0.384^{\star \star}$	$0.368^{\star \star \star}$	$0.279^{\star \star \star}$	$0.210^{\star \star \star}$
	$[0.139]$	$[0.173]$	$[0.152]$	$[0.161]$	$[0.152]$	$[0.129]$	$[0.098]$	$[0.067]$
R^{2}	8.7%	5.0%	11.9%	15.5%	14.4%	13.2%	7.4%	4.0%

International Residual Mispricing

	MDI	CIP 3M	CIP 1Y	CIP 2Y	CIP 3Y	CIP 5Y	CIP 7Y	CIP 10Y
β	0.275**	0.213	0.283^{*}	0.349**	0.350 **	0.329**	0.237**	$0.197^{\star \star \star}$
	[0.130]	[0.172]	[0.161]	[0.167]	[0.156]	[0.131]	[0.099]	[0.067]
R^{2}	7.3\%	4.1\%	7.6\%	11.8\%	11.9\%	10.5\%	5.2\%	3.5\%

Risk Prices

Risk Prices

$$
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{\text {dom }, t}+\varepsilon_{j, t}
$$

Risk Prices

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{\text {dom }, t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

Risk Prices

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{\text {dom }, t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

Table 7: RMP index and asset returns

	Equity	Currency
λ	$0.035^{\star \star \star}$	$0.040^{\star \star \star}$
	(5.233)	(5.077)
RMSE	0.0008	0.0003
R^{2}	40.8%	90.1%

Outline

The Paper

My Comments

Final Remarks

1) $M_{t}>0$ vs No-Arbitrage (Under Incomplete Markets)
2) $M_{t}>0$ vs No-Arbitrage (Under Incomplete Markets)

- No-Arbitrage $\Longleftrightarrow \exists S D F_{t}>0$

1) $M_{t}>0$ vs No-Arbitrage (Under Incomplete Markets)

- No-Arbitrage $\Longleftrightarrow \exists S D F_{t}>0$
- The linear (tradable) SDF is $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$

1) $M_{t}>0$ vs No-Arbitrage (Under Incomplete Markets)

- No-Arbitrage $\Longleftrightarrow \exists S D F_{t}>0$
- The linear (tradable) SDF is $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- $M_{t}^{\star}<0$ does not imply arbitrage opportunities exist under M_{t}^{\star}

1) $M_{t}>0$ vs No-Arbitrage (Under Incomplete Markets)

- No-Arbitrage $\Longleftrightarrow \exists S D F_{t}>0$
- The linear (tradable) SDF is $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- $M_{t}^{\star}<0$ does not imply arbitrage opportunities exist under M_{t}^{\star}
- We could have $M_{t}=M_{t}^{\star}+M_{t}^{o}>0$ with $M_{t}^{o} \perp \mathbb{R}_{t}$

1) $M_{t}>0$ vs No-Arbitrage (Under Incomplete Markets)

- No-Arbitrage $\Longleftrightarrow \exists S D F_{t}>0$
- The linear (tradable) SDF is $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- $M_{t}^{\star}<0$ does not imply arbitrage opportunities exist under M_{t}^{\star}
- We could have $M_{t}=M_{t}^{\star}+M_{t}^{o}>0$ with $M_{t}^{o} \perp \mathbb{R}_{t}$
- So, whether $M_{t}^{\star}<0$ implies arbitrage opportunities depends on whether M_{t}^{o} prices other assets or not

1) $M_{t}>0$ vs No-Arbitrage (Under Incomplete Markets)

- No-Arbitrage $\Longleftrightarrow \exists S D F_{t}>0$
- The linear (tradable) SDF is $M_{t+1}^{\star}=a_{t}+b_{t} \cdot r_{t+1}$
- $M_{t}^{\star}<0$ does not imply arbitrage opportunities exist under M_{t}^{\star}
- We could have $M_{t}=M_{t}^{\star}+M_{t}^{o}>0$ with $M_{t}^{o} \perp \mathbb{R}_{t}$
- So, whether $M_{t}^{\star}<0$ implies arbitrage opportunities depends on whether M_{t}^{o} prices other assets or not
- This discussion needs to be present in the text (+ it motivates testing whether M_{t}^{o} prices assets beyond M_{t}^{\star})

2) Why is M_{t}^{o} High in Bad Times
3) Why is M_{t}^{o} High in Bad Times

- In the CAPM, $M_{t}^{\star}=a-b \cdot r_{m, t}$ with $b>0$

2) Why is M_{t}^{o} High in Bad Times

- In the CAPM, $M_{t}^{\star}=a-b \cdot r_{m, t}$ with $b>0$
- So, we can only have $M_{t}^{\star}<0$ if $r_{m, t} \gg 0$ (good times!)

2) Why is M_{t}^{o} High in Bad Times

- In the CAPM, $M_{t}^{\star}=a-b \cdot r_{m, t}$ with $b>0$
- So, we can only have $M_{t}^{\star}<0$ if $r_{m, t} \gg 0$ (good times!)
- Similar logic applies to multifactor models

2) Why is M_{t}^{o} High in Bad Times

- In the CAPM, $M_{t}^{\star}=a-b \cdot r_{m, t}$ with $b>0$
- So, we can only have $M_{t}^{\star}<0$ if $r_{m, t} \gg 0$ (good times!)
- Similar logic applies to multifactor models
- But M_{t}^{o} is constructed such that $M_{t}=M_{t}^{\star}+M_{t}^{o}>0$

2) Why is M_{t}^{o} High in Bad Times

- In the CAPM, $M_{t}^{\star}=a-b \cdot r_{m, t}$ with $b>0$
- So, we can only have $M_{t}^{\star}<0$ if $r_{m, t} \gg 0$ (good times!)
- Similar logic applies to multifactor models
- But M_{t}^{o} is constructed such that $M_{t}=M_{t}^{\star}+M_{t}^{o}>0$
- As such, I would expect $M_{t}^{o}>0$ in good times

2) Why is M_{t}^{o} High in Bad Times

- In the CAPM, $M_{t}^{\star}=a-b \cdot r_{m, t}$ with $b>0$
- So, we can only have $M_{t}^{\star}<0$ if $r_{m, t} \gg 0$ (good times!)
- Similar logic applies to multifactor models
- But M_{t}^{o} is constructed such that $M_{t}=M_{t}^{\star}+M_{t}^{o}>0$
- As such, I would expect $M_{t}^{o}>0$ in good times
- Figure 1 shows the exact opposite

2) Why is M_{t}^{o} High in Bad Times

- In the CAPM, $M_{t}^{\star}=a-b \cdot r_{m, t}$ with $b>0$
- So, we can only have $M_{t}^{\star}<0$ if $r_{m, t} \gg 0$ (good times!)
- Similar logic applies to multifactor models
- But M_{t}^{o} is constructed such that $M_{t}=M_{t}^{\star}+M_{t}^{o}>0$
- As such, I would expect $M_{t}^{o}>0$ in good times
- Figure 1 shows the exact opposite
- What drives that? $\left(b_{t}\right.$? $b<0$? ... $)$

3) Do Investors Use M_{t}^{\star} ?

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:
- Investors use M_{t}^{\star}

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:
- Investors use M_{t}^{\star}
- When $M_{t}^{\star}<0\left(M_{t}^{o}>0\right)$, we have more arbitrage opportunities

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:
- Investors use M_{t}^{\star}
- When $M_{t}^{\star}<0\left(M_{t}^{o}>0\right)$, we have more arbitrage opportunities
- But the paper also argues that $R M P_{t}$ is priced (e.g., Table 7)

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:
- Investors use M_{t}^{\star}
- When $M_{t}^{\star}<0\left(M_{t}^{o}>0\right)$, we have more arbitrage opportunities
- But the paper also argues that $R M P_{t}$ is priced (e.g., Table 7)
- The implicit logic:

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:
- Investors use M_{t}^{\star}
- When $M_{t}^{\star}<0\left(M_{t}^{o}>0\right)$, we have more arbitrage opportunities
- But the paper also argues that $R M P_{t}$ is priced (e.g., Table 7)
- The implicit logic:
- Investors actually use M_{t}

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:
- Investors use M_{t}^{\star}
- When $M_{t}^{\star}<0\left(M_{t}^{o}>0\right)$, we have more arbitrage opportunities
- But the paper also argues that $R M P_{t}$ is priced (e.g., Table 7)
- The implicit logic:
- Investors actually use M_{t}
- Since $M_{t}=M_{t}^{\star}+M_{t}^{\circ}$, both M_{t}^{\star} and M_{t}^{o} are priced

3) Do Investors Use M_{t}^{\star} ?

- The paper links $R M P_{t}$ to arbitrage activity (e.g., Table 5)
- The implicit logic:
- Investors use M_{t}^{\star}
- When $M_{t}^{\star}<0\left(M_{t}^{o}>0\right)$, we have more arbitrage opportunities
- But the paper also argues that $R M P_{t}$ is priced (e.g., Table 7)
- The implicit logic:
- Investors actually use M_{t}
- Since $M_{t}=M_{t}^{\star}+M_{t}^{\circ}$, both M_{t}^{\star} and M_{t}^{o} are priced
- How do we reconcile these results?

4) Estimating Risk Prices (λ)

4) Estimating Risk Prices (λ)

- In the paper,

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

4) Estimating Risk Prices (λ)

- In the paper,

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

- If we want to test whether $R M P_{t}$ enters the SDF:

4) Estimating Risk Prices (λ)

- In the paper,

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

- If we want to test whether $R M P_{t}$ enters the SDF:
- We need $\beta_{j} \propto \operatorname{Cov}\left(r_{j, t}, R M P_{t}\right)$

4) Estimating Risk Prices (λ)

- In the paper,

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

- If we want to test whether $R M P_{t}$ enters the SDF:
- We need $\beta_{j} \propto \operatorname{Cov}\left(r_{j, t}, R M P_{t}\right)$
- And not $\beta_{j} \propto \operatorname{Cov}\left(\mathbb{E}_{t}\left[r_{j, t+1}\right], R M P_{t}\right)$

4) Estimating Risk Prices (λ)

- In the paper,

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

- If we want to test whether $R M P_{t}$ enters the SDF:
- We need $\beta_{j} \propto \operatorname{Cov}\left(r_{j, t}, R M P_{t}\right)$
- And not $\beta_{j} \propto \operatorname{Cov}\left(\mathbb{E}_{t}\left[r_{j, t+1}\right], R M P_{t}\right)$
- This is an issue since λ flips sign when using realized returns

4) Estimating Risk Prices (λ)

- In the paper,

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

- If we want to test whether $R M P_{t}$ enters the SDF:
- We need $\beta_{j} \propto \operatorname{Cov}\left(r_{j, t}, R M P_{t}\right)$
- And not $\beta_{j} \propto \operatorname{Cov}\left(\mathbb{E}_{t}\left[r_{j, t+1}\right], R M P_{t}\right)$
- This is an issue since λ flips sign when using realized returns
- This approach can be justified if $R M P_{t}=\mathbb{E}_{t}[f]$ where f_{t} is the relevant risk factor in the SDF

4) Estimating Risk Prices (λ)

- In the paper,

$$
\begin{gathered}
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\alpha_{j}+\beta_{j} \cdot R M P_{t}+\varepsilon_{j, t} \\
\mathbb{E}_{t}\left[r_{j, t+1}\right]=\lambda_{0}+\lambda \cdot \widehat{\beta}_{j}+\eta_{j}
\end{gathered}
$$

- If we want to test whether $R M P_{t}$ enters the SDF:
- We need $\beta_{j} \propto \operatorname{Cov}\left(r_{j, t}, R M P_{t}\right)$
- And not $\beta_{j} \propto \operatorname{Cov}\left(\mathbb{E}_{t}\left[r_{j, t+1}\right], R M P_{t}\right)$
- This is an issue since λ flips sign when using realized returns
- This approach can be justified if $R M P_{t}=\mathbb{E}_{t}[f]$ where f_{t} is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

Other Comments

1. The interpretation of $R M P_{t}$ as the profit associated with an insurance strategy implicitly assumes that M_{t}^{o} is a tradable payoff. I suggest you add a discussion of this aspect
2. D / P is a typical state variable predicting the equity premium. I suggest you add D / P to the set of state variables used to estimate $\mathbb{E}_{t}[\cdot]$
3. Typical models induce an exponential SDF. I suggest you provide a more detailed discussion about why a polynomial SDF is preferred over an exponential SDF

Outline

The Paper

My Comments

Final Remarks

Final Remarks

- Very interesting paper:

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure
- Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure
- Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure
- Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
- Elaborate on when $M_{t}^{\star}<0$ implies arbitrage opportunities

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure
- Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
- Elaborate on when $M_{t}^{\star}<0$ implies arbitrage opportunities
- Clarify why M_{t}^{o} is high in bad times

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure
- Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
- Elaborate on when $M_{t}^{\star}<0$ implies arbitrage opportunities
- Clarify why M_{t}^{o} is high in bad times
- Further explore whether the evidence suggests investors use M_{t}^{\star}

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure
- Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
- Elaborate on when $M_{t}^{\star}<0$ implies arbitrage opportunities
- Clarify why M_{t}^{o} is high in bad times
- Further explore whether the evidence suggests investors use M_{t}^{\star}
- Adjust the λ Estimation

Final Remarks

- Very interesting paper:
- Constructs an SDF that precludes arbitrage opportunities
- Constructs a Residual MisPricing (RMP) measure
- Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
- Elaborate on when $M_{t}^{\star}<0$ implies arbitrage opportunities
- Clarify why M_{t}^{o} is high in bad times
- Further explore whether the evidence suggests investors use M_{t}^{\star}
- Adjust the λ Estimation
- Good luck!

