

International Arbitrage Premia

Mirela Sandulescu and Paul Schneider

Discussant: Andrei S. Gonçalves

2022 WSIR

Outline

The Paper

My Comments

Final Remarks

- Linear SDF: $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- Estimate from $\mathbb{E}_t[M_{t+1}^{\star}] = 1/R_{f,t+1}$ and $\mathbb{E}_t[M_{t+1}^{\star}r_{t+1}] = 0$
- Problem: sometimes implies $M_t^{\star} < 0$
- Polynomial SDF: $M_{t+1} = w_{0,t} + w_{1,t} \cdot r_{t+1} + w_{2,t} \cdot r_{t+1}^2 + \dots$
- Estimate from

- Linear SDF: $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- Estimate from $\mathbb{E}_t[M_{t+1}^{\star}] = 1/R_{f,t+1}$ and $\mathbb{E}_t[M_{t+1}^{\star}r_{t+1}] = 0$
- Problem: sometimes implies $M_t^{\star} < 0$
- Polynomial SDF: $M_{t+1} = w_{0,t} + w_{1,t} \cdot r_{t+1} + w_{2,t} \cdot r_{t+1}^2 + \dots$
- Estimate from

- Linear SDF: $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- Estimate from $\mathbb{E}_t[M_{t+1}^{\star}] = 1/R_{f,t+1}$ and $\mathbb{E}_t[M_{t+1}^{\star}r_{t+1}] = 0$
- Problem: sometimes implies $M_t^{\star} < 0$
- Polynomial SDF: $M_{t+1} = w_{0,t} + w_{1,t} \cdot r_{t+1} + w_{2,t} \cdot r_{t+1}^2 + \dots$
- Estimate from

- Linear SDF: $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- Estimate from $\mathbb{E}_t[M_{t+1}^{\star}] = 1/R_{f,t+1}$ and $\mathbb{E}_t[M_{t+1}^{\star}r_{t+1}] = 0$
- Problem: sometimes implies $M_t^{\star} < 0$
- Polynomial SDF: $M_{t+1} = w_{0,t} + w_{1,t} \cdot r_{t+1} + w_{2,t} \cdot r_{t+1}^2 + \dots$
- Estimate from

- Linear SDF: $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- Estimate from $\mathbb{E}_t[M_{t+1}^{\star}] = 1/R_{f,t+1}$ and $\mathbb{E}_t[M_{t+1}^{\star}r_{t+1}] = 0$
- Problem: sometimes implies $M_t^{\star} < 0$
- Polynomial SDF: $M_{t+1} = w_{0,t} + w_{1,t} \cdot r_{t+1} + w_{2,t} \cdot r_{t+1}^2 + \dots$
- Estimate from

- Linear SDF: $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- Estimate from $\mathbb{E}_t[M_{t+1}^{\star}] = 1/R_{f,t+1}$ and $\mathbb{E}_t[M_{t+1}^{\star}r_{t+1}] = 0$
- Problem: sometimes implies $M_t^{\star} < 0$
- Polynomial SDF: $M_{t+1} = w_{0,t} + w_{1,t} \cdot r_{t+1} + w_{2,t} \cdot r_{t+1}^2 + \dots$
- Estimate from $Minimize_{W_t} \mathbb{E}_t[M_{t+1}^2]$ s.t. $\mathbb{E}_t[M_{t+1}] = 1/R_{f,t+1}$ $\mathbb{E}_t[M_{t+1}r_{t+1}] = 0$ $M_t > 0$
- Study the Residual Mispricing: $RMP_{t+1} = M_{t+1}^o \mathbb{E}_t[M_{t+1}^{o2}]$ where $M_t^o = M_t - M_t^*$

- Linear SDF: $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- Estimate from $\mathbb{E}_t[M_{t+1}^{\star}] = 1/R_{f,t+1}$ and $\mathbb{E}_t[M_{t+1}^{\star}r_{t+1}] = 0$
- Problem: sometimes implies $M_t^{\star} < 0$
- Polynomial SDF: $M_{t+1} = w_{0,t} + w_{1,t} \cdot r_{t+1} + w_{2,t} \cdot r_{t+1}^2 + \dots$
- Estimate from $Minimize_{w_t} \mathbb{E}_t[M_{t+1}^2]$ s.t. $\mathbb{E}_t[M_{t+1}] = 1/R_{f,t+1}$ $\mathbb{E}_t[M_{t+1}r_{t+1}] = 0$ $M_t > 0$
- Study the Residual Mispricing: $RMP_{t+1} = M_{t+1}^o \mathbb{E}_t[M_{t+1}^{o2}]$ where $M_t^o = M_t - M_t^{\star}$

Figure 1: Time series of international residual mispricing

2/10

Table 1: I	Determinants	\mathbf{of}	\mathbf{RMP}	
------------	--------------	---------------	----------------	--

	Panel A:	U.S. Resi	dual Misp	ricing		
Financial uncertainty	0.441^{***}				0.392***	
	[0.086]				[0.063]	
VIX		0.500^{***}				$0.490^{\star\star\star}$
		[0.112]				[0.103]
Intermediary leverage			$0.234^{\star\star\star}$		0.056	-0.006
			[0.073]		[0.049]	[0.058]
TED spread				$0.258^{\star\star}$	0.132	0.082
				[0.127]	[0.095]	[0.080]
R^2	19.2%	24.9%	5.3%	6.5%	21.8%	26.8%

Financial uncertainty	$0.445^{\star\star\star}$				$0.396^{\star\star\star}$	
	[0.095]				[0.069]	
VIX		$0.506^{\star\star\star}$				0.494^{***}
		[0.138]				[0.126]
Intermediary leverage			$0.206^{\star\star\star}$		0.016	-0.047
			[0.072]		[0.050]	[0.062]
TED spread				$0.289^{\star\star}$	0.173	0.123
				[0.140]	[0.112]	[0.090]
R^2	19.6%	25.4%	4.0%	8.2%	22.6%	27.7%

Table 1: Dete	rminants	of	\mathbf{RMP}
---------------	----------	----	----------------

	Panel A:	U.S. Resi	dual Misp	ricing		
Financial uncertainty	0.441***				$0.392^{\star\star\star}$	
	[0.086]				[0.063]	
VIX		0.500^{***}				$0.490^{\star\star\star}$
		[0.112]				[0.103]
Intermediary leverage			$0.234^{\star\star\star}$		0.056	-0.006
			[0.073]		[0.049]	[0.058]
TED spread				$0.258^{\star\star}$	0.132	0.082
				[0.127]	[0.095]	[0.080]
R^2	19.2%	24.9%	5.3%	6.5%	21.8%	26.8%

Pa	nel B: Inte	ernational	Residual N	Mispricing]	
Financial uncertainty	0.445***				0.396***	
	[0.095]				[0.069]	
VIX		0.506^{***}				$0.494^{\star\star}$
		[0.138]				[0.126
Intermediary leverage			0.206***		0.016	-0.047
			[0.072]		[0.050]	[0.062
TED spread				0.289^{**}	0.173	0.123
				[0.140]	[0.112]	[0.090
R^2	19.6%	25.4%	4.0%	8.2%	22.6%	27.7%

				~					
	Panel A: Contemporaneous regressions								
			1	U.S. Residu	al Mispric	ing			
	MDI	${\rm CIP}~3{\rm M}$	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP $5Y$	CIP $7Y$	CIP $10Y$	
β	0.331^{*}	0.320^{\star}	$0.302^{\star\star}$	0.361^{**}	$0.348^{\star\star}$	0.331^{***}	0.255^{***}	0.190***	
	[0.171]	[0.195]	[0.132]	[0.145]	[0.141]	[0.121]	[0.099]	[0.069]	
R^2	10.7%	9.8%	8.7%	12.7%	11.8%	10.6%	6.1%	3.2%	
	International Residual Mispricing								
	MDI	CIP 3M	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP $5Y$	CIP $7Y$	CIP $10Y$	
β	0.285^{*}	0.267	0.245^{*}	$0.318^{\star\star}$	0.319^{**}	0.296^{**}	0.222**	0.178***	
	[0.148]	[0.201]	[0.143]	[0.150]	[0.141]	[0.123]	[0.098]	[0.069]	
R^2	7.8%	6.8%	5.6%	9.8%	9.8%	8.4%	4.5%	2.8%	
	Panel B: Predictive regressions								
			1	U.S. Residu	al Mispric	ing			
	MDI	CIP 3M	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP 5Y	CIP $7Y$	CIP $10Y$	
β	$0.301^{\star\star}$	0.231	$0.350^{\star\star}$	$0.399^{\star\star\star}$	$0.384^{\star\star}$	$0.368^{\star\star\star}$	$0.279^{\star\star\star}$	$0.210^{\star\star\star}$	
	[0.139]	[0.173]	[0.152]	[0.161]	[0.152]	[0.129]	[0.098]	[0.067]	
R^2	8.7%	5.0%	11.9%	15.5%	14.4%	13.2%	7.4%	4.0%	
			Inter	national R	esidual Mi	spricing			
	MDI	${\rm CIP}~3{\rm M}$	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP 5Y	CIP $7Y$	CIP $10Y$	
β	$0.275^{\star\star}$	0.213	0.283^{\star}	$0.349^{\star\star}$	0.350^{**}	$0.329^{\star\star}$	0.237^{**}	0.197***	
	[0.130]	[0.172]	[0.161]	[0.167]	[0.156]	[0.131]	[0.099]	[0.067]	
R^2	7.3%	4.1%	7.6%	11.8%	11.9%	10.5%	5.2%	3.5%	

Table 5: RMP and statistical arbitrage in the data

			Panel A	: Contemp	oraneous r	egressions			
			τ	U.S. Residu	al Mispric	ing			
	MDI	CIP 3M	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP $5Y$	CIP $7Y$	CIP 10Y	
β	0.331^{*}	0.320^{\star}	$0.302^{\star\star}$	0.361^{**}	$0.348^{\star\star}$	0.331^{***}	$0.255^{\star\star\star}$	0.190^{***}	
	[0.171]	[0.195]	[0.132]	[0.145]	[0.141]	[0.121]	[0.099]	[0.069]	
\mathbb{R}^2	10.7%	9.8%	8.7%	12.7%	11.8%	10.6%	6.1%	3.2%	
	International Residual Mispricing								
	MDI	CIP 3M	CIP $1Y$	CIP $2Y$	CIP 3Y	CIP $5Y$	CIP $7Y$	CIP 10Y	
β	0.285^{\star}	0.267	0.245^{\star}	$0.318^{\star\star}$	0.319^{**}	$0.296^{\star\star}$	0.222^{**}	$0.178^{\star\star\star}$	
	[0.148]	[0.201]	[0.143]	[0.150]	[0.141]	[0.123]	[0.098]	[0.069]	
R^2	7.8%	6.8%	5.6%	9.8%	9.8%	8.4%	4.5%	2.8%	
			Pan	el B: Predi	ictive regre	essions			
			τ	U.S. Residu	al Mispric	ing			
	MDI	CIP 3M	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP $5Y$	CIP $7Y$	CIP $10Y$	
β	$0.301^{\star\star}$	0.231	$0.350^{\star\star}$	$0.399^{\star\star\star}$	$0.384^{\star\star}$	$0.368^{\star\star\star}$	$0.279^{\star\star\star}$	$0.210^{\star\star\star}$	
	[0.139]	[0.173]	[0.152]	[0.161]	[0.152]	[0.129]	[0.098]	[0.067]	
R^2	8.7%	5.0%	11.9%	15.5%	14.4%	13.2%	7.4%	4.0%	
			Inter	national R	esidual Mis	spricing			
	MDI	${\rm CIP}~3{\rm M}$	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP 5Y	CIP $7Y$	CIP $10Y$	
β	$0.275^{\star\star}$	0.213	0.283^{\star}	$0.349^{\star\star}$	$0.350^{\star\star}$	$0.329^{\star\star}$	$0.237^{\star\star}$	0.197^{***}	
	[0.130]	[0.172]	[0.161]	[0.167]	[0.156]	[0.131]	[0.099]	[0.067]	
R^2	7.3%	4.1%	7.6%	11.8%	11.9%	10.5%	5.2%	3.5%	

Table 5: RMP and statistical arbitrage in the data

			Panel A	: Contemp	oraneous r	regressions			
			τ	U.S. Residu	al Mispric	ing			
	MDI	CIP 3M	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP $5Y$	CIP $7Y$	CIP $10Y$	
β	0.331^{*}	0.320^{\star}	$0.302^{\star\star}$	0.361^{**}	0.348^{**}	0.331***	$0.255^{\star\star\star}$	0.190^{***}	
	[0.171]	[0.195]	[0.132]	[0.145]	[0.141]	[0.121]	[0.099]	[0.069]	
R^2	10.7%	9.8%	8.7%	12.7%	11.8%	10.6%	6.1%	3.2%	
	International Residual Mispricing								
	MDI	CIP 3M	CIP $1Y$	CIP $2Y$	CIP $3Y$	CIP $5Y$	CIP $7Y$	CIP $10Y$	
β	0.285^{*}	0.267	0.245^{*}	$0.318^{\star\star}$	0.319**	$0.296^{\star\star}$	0.222**	0.178***	
	[0.148]	[0.201]	[0.143]	[0.150]	[0.141]	[0.123]	[0.098]	[0.069]	
R^2	7.8%	6.8%	5.6%	9.8%	9.8%	8.4%	4.5%	2.8%	
n^{-}	1.070	0.870	0.070	9.870	9.870	8.4%	4.3%	2.070	
	1.870	0.870		9.8% el B: Predi			4.3%	2.870	
	1.070	0.870	Pan		ctive regre	essions	4.3%	2.870	
	MDI	CIP 3M	Pan	el B: Predi	ctive regre	essions	4.5% CIP 7Y	CIP 10Y	
<u>π</u> -			Pan	el B: Predi U.S. Residu	ctive regre al Mispric	essions			
	MDI	CIP 3M	Pan CIP 1Y	el B: Predi U.S. Residu CIP 2Y	ctive regre al Mispric CIP 3Y	essions ing CIP 5Y	CIP 7Y	CIP 10Y	
	MDI 0.301**	CIP 3M 0.231	Pan U CIP 1Y 0.350**	el B: Predi U.S. Residu CIP 2Y 0.399***	ctive regre al Mispric CIP 3Y 0.384**	essions ing CIP 5Y 0.368***	CIP 7Y 0.279***	CIP 10Y 0.210***	
β	MDI 0.301** [0.139]	CIP 3M 0.231 [0.173]	Pan CIP 1Y 0.350** [0.152] 11.9%	el B: Predi U.S. Residu CIP 2Y 0.399*** [0.161]	ctive regre al Mispric CIP 3Y 0.384** [0.152] 14.4%	essions ing CIP 5Y 0.368*** [0.129] 13.2%	CIP 7Y 0.279*** [0.098]	CIP 10Y 0.210*** [0.067]	
β	MDI 0.301** [0.139]	CIP 3M 0.231 [0.173]	Pan CIP 1Y 0.350** [0.152] 11.9%	el B: Predi U.S. Residu CIP 2Y 0.399*** [0.161] 15.5%	ctive regre al Mispric CIP 3Y 0.384** [0.152] 14.4%	essions ing CIP 5Y 0.368*** [0.129] 13.2%	CIP 7Y 0.279*** [0.098]	CIP 10Y 0.210*** [0.067]	
β	MDI 0.301** [0.139] 8.7%	CIP 3M 0.231 [0.173] 5.0%	Pan CIP 1Y 0.350** [0.152] 11.9% Inter	el B: Predi U.S. Residu CIP 2Y 0.399*** [0.161] 15.5% national Re	ctive regre cIP 3Y 0.384** [0.152] 14.4% esidual Mis	essions ing CIP 5Y 0.368*** [0.129] 13.2% spricing	CIP 7Y 0.279*** [0.098] 7.4%	CIP 10Y 0.210*** [0.067] 4.0%	
β R ²	MDI 0.301** [0.139] 8.7% MDI	CIP 3M 0.231 [0.173] 5.0% CIP 3M	Pan CIP 1Y 0.350** [0.152] 11.9% Inter CIP 1Y	el B: Predi U.S. Residu CIP 2Y 0.399*** [0.161] 15.5% national Re CIP 2Y	ctive regre al Mispric CIP 3Y 0.384** [0.152] 14.4% esidual Mis CIP 3Y	CIP 5Y 0.368*** [0.129] 13.2% spricing CIP 5Y	CIP 7Y 0.279*** [0.098] 7.4% CIP 7Y	CIP 10Y 0.210*** [0.067] 4.0% CIP 10Y	

Table 5: RMP and statistical arbitrage in the data

$\mathbb{E}_{t}[r_{j,t+1}] = \alpha_{j} + \beta_{j} \cdot RMP_{dom,t} + \varepsilon_{j,t}$

 $\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \lambda \cdot \widehat{\beta}_j + \eta_j$

 $\mathbb{E}_{t}[r_{j,t+1}] = \alpha_{j} + \beta_{j} \cdot RMP_{dom,t} + \varepsilon_{j,t}$

 $\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \lambda \cdot \beta_j + \eta_j$

$$\mathbb{E}_{t}[r_{j,t+1}] = \alpha_{j} + \beta_{j} \cdot RMP_{dom,t} + \varepsilon_{j,t}$$

$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \lambda \cdot \widehat{\beta}_j + \eta_j$$

$$\mathbb{E}_{t}[r_{j,t+1}] = \alpha_{j} + \beta_{j} \cdot RMP_{dom,t} + \varepsilon_{j,t}$$

$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \lambda \cdot \widehat{\beta}_j + \eta_j$$

Table 7: RMP index and asset returns

	Equity	Currency
λ	0.035***	0.040***
	(5.233)	(5.077)
RMSE	0.0008	0.0003
R^2	40.8%	90.1%

Outline

The Paper

My Comments

Final Remarks

- No-Arbitrage $\iff \exists SDF_t > 0$
- The linear (tradable) SDF is $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- $M_t^{\star} < 0$ does not imply arbitrage opportunities exist under M_t^{\star}
- We could have $M_t = M_t^\star + M_t^o > 0$ with $M_t^o \perp \mathbb{R}_t$
- So, whether M^{*}_t < 0 implies arbitrage opportunities depends on whether M^o_t prices other assets or not
- This discussion needs to be present in the text

 (+ it motivates testing whether M^o_t prices assets beyond M^{*}_t)

- No-Arbitrage $\iff \exists SDF_t > 0$
- The linear (tradable) SDF is $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- $M_t^{\star} < 0$ does not imply arbitrage opportunities exist under M_t^{\star}
- We could have $M_t = M_t^\star + M_t^o > 0$ with $M_t^o \perp \mathbb{R}_t$
- So, whether M^{*}_t < 0 implies arbitrage opportunities depends on whether M^o_t prices other assets or not
- This discussion needs to be present in the text
 (+ it motivates testing whether M^o_t prices assets beyond M^{*}_t)

- 1) $M_t > 0$ vs No-Arbitrage (Under Incomplete Markets)
 - No-Arbitrage $\iff \exists SDF_t > 0$
 - The linear (tradable) SDF is $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
 - *M*^{*}_t < 0 does not imply arbitrage opportunities exist under *M*^{*}_t
 - We could have $M_t = M_t^\star + M_t^o > 0$ with $M_t^o \perp \mathbb{R}_t$
 - So, whether M^{*}_t < 0 implies arbitrage opportunities depends on whether M^o_t prices other assets or not
 - This discussion needs to be present in the text

 (+ it motivates testing whether M^o_t prices assets beyond M^{*}_t)

- 1) $M_t > 0$ vs No-Arbitrage (Under Incomplete Markets)
 - No-Arbitrage $\iff \exists SDF_t > 0$
 - The linear (tradable) SDF is $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
 - $M_t^{\star} < 0$ does not imply arbitrage opportunities exist under M_t^{\star}
 - We could have $M_t = M_t^\star + M_t^o > 0$ with $M_t^o \perp \mathbb{R}_t$
 - So, whether M^{*}_t < 0 implies arbitrage opportunities depends on whether M^o_t prices other assets or not
 - This discussion needs to be present in the text
 (+ it motivates testing whether M^o_t prices assets beyond M^{*}_t)

- No-Arbitrage $\iff \exists SDF_t > 0$
- The linear (tradable) SDF is $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- $M_t^{\star} < 0$ does not imply arbitrage opportunities exist under M_t^{\star}
- We could have $M_t = M_t^{\star} + M_t^o > 0$ with $M_t^o \perp \mathbb{R}_t$
- So, whether M^{*}_t < 0 implies arbitrage opportunities depends on whether M^o_t prices other assets or not
- This discussion needs to be present in the text

 (+ it motivates testing whether M^o_t prices assets beyond M^{*}_t)

- No-Arbitrage $\iff \exists SDF_t > 0$
- The linear (tradable) SDF is $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- $M_t^{\star} < 0$ does not imply arbitrage opportunities exist under M_t^{\star}
- We could have $M_t = M_t^{\star} + M_t^o > 0$ with $M_t^o \perp \mathbb{R}_t$
- So, whether M^{*}_t < 0 implies arbitrage opportunities depends on whether M^o_t prices other assets or not
- This discussion needs to be present in the text
 (+ it motivates testing whether M^o_t prices assets beyond M^{*}_t)

- No-Arbitrage $\iff \exists SDF_t > 0$
- The linear (tradable) SDF is $M_{t+1}^{\star} = a_t + b_t \cdot r_{t+1}$
- $M_t^{\star} < 0$ does not imply arbitrage opportunities exist under M_t^{\star}
- We could have $M_t = M_t^{\star} + M_t^o > 0$ with $M_t^o \perp \mathbb{R}_t$
- So, whether M^{*}_t < 0 implies arbitrage opportunities depends on whether M^o_t prices other assets or not
- This discussion needs to be present in the text
 (+ it motivates testing whether M^o_t prices assets beyond M^{*}_t)

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have $M_t^{\star} < 0$ if $r_{m,t} >> 0$ (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^* + M_t^o > 0$
- As such, I would expect $M_t^o > 0$ in good times
- Figure 1 shows the exact opposite

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have M^{*}_t < 0 if r_{m,t} >> 0 (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^{\star} + M_t^o > 0$
- As such, I would expect $M_t^o > 0$ in good times
- Figure 1 shows the exact opposite

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have $M_t^{\star} < 0$ if $r_{m,t} >> 0$ (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^{\star} + M_t^o > 0$
- As such, I would expect $M_t^o > 0$ in good times
- Figure 1 shows the exact opposite

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have $M_t^{\star} < 0$ if $r_{m,t} >> 0$ (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^* + M_t^o > 0$
- As such, I would expect M^o_t > 0 in good times
- Figure 1 shows the exact opposite

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have $M_t^{\star} < 0$ if $r_{m,t} >> 0$ (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^{\star} + M_t^o > 0$
- As such, I would expect $M_t^o > 0$ in good times
- Figure 1 shows the exact opposite

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have $M_t^{\star} < 0$ if $r_{m,t} >> 0$ (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^{\star} + M_t^o > 0$
- As such, I would expect $M_t^o > 0$ in good times
- Figure 1 shows the exact opposite

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have $M_t^{\star} < 0$ if $r_{m,t} >> 0$ (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^{\star} + M_t^o > 0$
- As such, I would expect M^o_t > 0 in good times
- Figure 1 shows the exact opposite

- In the CAPM, $M_t^{\star} = a b \cdot r_{m,t}$ with b > 0
- So, we can only have $M_t^{\star} < 0$ if $r_{m,t} >> 0$ (good times!)
- Similar logic applies to multifactor models
- But M_t^o is constructed such that $M_t = M_t^{\star} + M_t^o > 0$
- As such, I would expect $M_t^o > 0$ in good times
- Figure 1 shows the exact opposite
- What drives that? $(b_t? \ b < 0? \dots)$

3) Do Investors Use M_t^* ?

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:

- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:

• How do we reconcile these results?

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:

- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}

 $\,\circ\,$ When $M_t^{\star} < 0~(M_t^o > 0),$ we have more arbitrage opportunities

- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}

• When $M_t^{\star} < 0$ $(M_t^o > 0)$, we have more arbitrage opportunities

- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}
 - When $M_t^{\star} < 0 \ (M_t^o > 0)$, we have more arbitrage opportunities
- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}
 - When $M_t^{\star} < 0$ ($M_t^{o} > 0$), we have more arbitrage opportunities
- But the paper also argues that *RMP_t* is priced (e.g., Table 7)
- The implicit logic:

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}
 - When $M_t^{\star} < 0$ $(M_t^o > 0)$, we have more arbitrage opportunities
- But the paper also argues that *RMP*_t is priced (e.g., Table 7)
- The implicit logic:

 \circ Investors actually use M_t

• Since $M_t = M_t^{\star} + M_t^o$, both M_t^{\star} and M_t^o are priced

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}
 - When $M_t^{\star} < 0$ $(M_t^o > 0)$, we have more arbitrage opportunities
- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:
 - Investors actually use M_t
 - Since $M_t = M_t^{\star} + M_t^o$, both M_t^{\star} and M_t^o are priced

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}
 - When $M_t^{\star} < 0$ ($M_t^o > 0$), we have more arbitrage opportunities
- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:
 - Investors actually use M_t
 - Since $M_t = M_t^{\star} + M_t^o$, both M_t^{\star} and M_t^o are priced
- How do we reconcile these results?

- The paper links *RMP*_t to arbitrage activity (e.g., Table 5)
- The implicit logic:
 - Investors use M_t^{\star}
 - When $M_t^{\star} < 0$ ($M_t^o > 0$), we have more arbitrage opportunities
- But the paper also argues that RMP_t is priced (e.g., Table 7)
- The implicit logic:

• Investors actually use M_t

• Since $M_t = M_t^{\star} + M_t^o$, both M_t^{\star} and M_t^o are priced

In the paper,

If we want to test whether RMP_t enters the SDF:

- This is an issue since λ flips sign when using realized returns
- This approach can be justified if RMP_t = E_t[f] where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

In the paper,

$$\mathbb{E}_t[r_{j,t+1}] = \alpha_j + \beta_j \cdot RMP_t + \varepsilon_{j,t}$$
$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \frac{\lambda}{\beta} \cdot \hat{\beta}_j + \eta_j$$

• If we want to test whether *RMP*_t enters the SDF:

- This is an issue since λ flips sign when using realized returns
- This approach can be justified if RMP_t = E_t[f] where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

In the paper,

$$\mathbb{E}_t[r_{j,t+1}] = \alpha_j + \beta_j \cdot RMP_t + \varepsilon_{j,t}$$
$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \frac{\lambda}{\lambda} \cdot \hat{\beta}_j + \eta_j$$

- If we want to test whether *RMP*_t enters the SDF:
 - We need $\beta_j \propto Cov(r_{j,t}, RMP_t)$
 - And not $\beta_j \propto Cov(\mathbb{E}_t[r_{j,t+1}], RMP_t)$
- This is an issue since λ flips sign when using realized returns
- This approach can be justified if RMP_t = E_t[f] where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

In the paper,

$$\mathbb{E}_t[r_{j,t+1}] = \alpha_j + \beta_j \cdot RMP_t + \varepsilon_{j,t}$$
$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \frac{\lambda}{\beta} \cdot \widehat{\beta}_j + \eta_j$$

• If we want to test whether *RMP*_t enters the SDF:

• We need $\beta_j \propto Cov(r_{j,t}, RMP_t)$

• And not $eta_j \propto {\it Cov}(\mathbb{E}_t[r_{j,t+1}], {\it RMP}_t)$

- This is an issue since λ flips sign when using realized returns
- This approach can be justified if RMP_t = E_t[f] where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

In the paper,

$$\mathbb{E}_t[r_{j,t+1}] = \alpha_j + \beta_j \cdot RMP_t + \varepsilon_{j,t}$$
$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \frac{\lambda}{\beta} \cdot \widehat{\beta}_j + \eta_j$$

• If we want to test whether *RMP*_t enters the SDF:

- We need $\beta_j \propto Cov(r_{j,t}, RMP_t)$
- And not $\beta_j \propto \textit{Cov}(\mathbb{E}_t[r_{j,t+1}],\textit{RMP}_t)$
- This is an issue since λ flips sign when using realized returns
- This approach can be justified if RMP_t = E_t[f] where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

In the paper,

$$\mathbb{E}_t[r_{j,t+1}] = \alpha_j + \beta_j \cdot RMP_t + \varepsilon_{j,t}$$
$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \frac{\lambda}{\beta_j} \cdot \widehat{\beta}_j + \eta_j$$

• If we want to test whether *RMP*_t enters the SDF:

- We need $\beta_j \propto Cov(r_{j,t}, RMP_t)$
- And not $\beta_j \propto Cov(\mathbb{E}_t[r_{j,t+1}], RMP_t)$
- This is an issue since λ flips sign when using realized returns
- This approach can be justified if RMP_t = E_t[f] where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

In the paper,

$$\mathbb{E}_t[r_{j,t+1}] = \alpha_j + \beta_j \cdot RMP_t + \varepsilon_{j,t}$$
$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \frac{\lambda}{\lambda} \cdot \hat{\beta}_j + \eta_j$$

• If we want to test whether *RMP*_t enters the SDF:

• We need
$$\beta_j \propto Cov(r_{j,t}, RMP_t)$$

• And not $\beta_j \propto \textit{Cov}(\mathbb{E}_t[r_{j,t+1}], \textit{RMP}_t)$

- This is an issue since λ flips sign when using realized returns
- This approach can be justified if $RMP_t = \mathbb{E}_t[f]$ where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

In the paper,

$$\mathbb{E}_t[r_{j,t+1}] = \alpha_j + \beta_j \cdot RMP_t + \varepsilon_{j,t}$$
$$\mathbb{E}_t[r_{j,t+1}] = \lambda_0 + \frac{\lambda}{\beta_j} \cdot \widehat{\beta}_j + \eta_j$$

• If we want to test whether *RMP*_t enters the SDF:

• We need
$$\beta_j \propto Cov(r_{j,t}, RMP_t)$$

• And not $\beta_j \propto \textit{Cov}(\mathbb{E}_t[r_{j,t+1}], \textit{RMP}_t)$

- This is an issue since λ flips sign when using realized returns
- This approach can be justified if RMP_t = E_t[f] where f_t is the relevant risk factor in the SDF
- But in this case a clean discussion of the economics behind this analysis is needed

Other Comments

- 1. The interpretation of RMP_t as the profit associated with an insurance strategy implicitly assumes that M_t^o is a tradable payoff. I suggest you add a discussion of this aspect
- D/P is a typical state variable predicting the equity premium.
 I suggest you add D/P to the set of state variables used to estimate E_t[·]
- Typical models induce an exponential SDF. I suggest you provide a more detailed discussion about why a polynomial SDF is preferred over an exponential SDF

Outline

The Paper

My Comments

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
 - Elaborate on when $M_t^{\star} < 0$ implies arbitrage opportunities
 - $\circ~$ Clarify why M_t^o is high in bad times
 - Further explore whether the evidence suggests investors use M_t^*
 - \circ Adjust the λ Estimation
- Good luck!

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
 - Elaborate on when $M_t^{\star} < 0$ implies arbitrage opportunities
 - Clarify why M_t^o is high in bad times
 - Further explore whether the evidence suggests investors use M_t^*
 - \circ Adjust the λ Estimation
- Good luck!

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
 - Elaborate on when $M_t^{\star} < 0$ implies arbitrage opportunities
 - Clarify why M_t^o is high in bad times
 - Further explore whether the evidence suggests investors use M_t
 - \circ Adjust the λ Estimation
- Good luck!

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
 - Elaborate on when $M_t^{\star} < 0$ implies arbitrage opportunities
 - Clarify why M_t^o is high in bad times
 - Further explore whether the evidence suggests investors use M_t^{\star}
 - \circ Adjust the λ Estimation
- Good luck!

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
 - Elaborate on when $M_t^{\star} < 0$ implies arbitrage opportunities
 - Clarify why M_t^o is high in bad times
 - Further explore whether the evidence suggests investors use M_t^{\star}
 - Adjust the λ Estimation

Good luck!

- Very interesting paper:
 - Constructs an SDF that precludes arbitrage opportunities
 - Constructs a Residual MisPricing (RMP) measure
 - Explores RMP empirically, especially its link to uncertainty, recessions, and arbitrage activity
- It would be useful to:
 - Elaborate on when $M_t^{\star} < 0$ implies arbitrage opportunities
 - Clarify why M_t^o is high in bad times
 - Further explore whether the evidence suggests investors use M_t^{\star}
 - Adjust the λ Estimation
- Good luck!