

Monetary Policy and the Equity Term Structure

Benjamin Golez and Ben Matthies

Discussant: Andrei S. Gonçalves

2022 USC Macro-Finance Conference

Outline

The Paper

My Comments

Final Remarks

Response of S&P 500 to Monetary Policy Surprises

Gürkaynak, Sack, and Swanson (2004)

The Impact of Monetary Policy on Dividends, Interest Rates, and Future Returns

	Sample Used for VAR	
	1/73-12/02	5/89-12/02
Current excess return	-11.55	-11.01
	(3.87)	(3.72)

Bernanke and Kuttner (2005)

The Impact of Monetary Policy on Dividends, Interest Rates, and Future Returns

Sample Used for VAR	
1/73-12/02	5/89-12/02
-11.55	-11.01
(3.87)	(3.72)
6.10	3.29
(1.74)	(1.10)
0.64	0.77
(1.03)	(1.87)
-4.82	-6.96
(1.73)	(2.35)
	Sample Us 1/73–12/02 -11.55 (3.87) 6.10 (1.74) 0.64 (1.03) -4.82 (1.73)

Bernanke and Kuttner (2005)

The Impact of Monetary Policy on Dividends, Interest Rates, and Future Returns

	Sample Used for VAR	
	1/73-12/02	5/89-12/02
Current excess return	(11.55)	
Future excess returns	6.10 (174)	3.29 (1.10)
Real interest rate	0.64	0.77
Dividends	(1.03) (4.82) (1.73)	(1.87) (2.35)

Bernanke and Kuttner (2005)

My Comments

Final Remarks

The Fed Information Effect

My Comments

Final Remarks

The Fed Information Effect

Nakamura and Steinsson (2018 QJE, page 1304-1305):

- Studies how monetary policy affects the equity term structure
- $log(P_t^{(h)}) = log(D_t) + \mathbb{E}_t[g_{t \to t+h}] \mathbb{E}_t[r_{t \to t+h}^{(h)}]$
- $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect)
- $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- Studies how monetary policy affects the equity term structure
- $log(P_t^{(h)}) = log(D_t) + \mathbb{E}_t[g_{t \to t+h}] \mathbb{E}_t[r_{t \to t+h}^{(h)}]$
- $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect)
- $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- Studies how monetary policy affects the equity term structure
- $log(P_t^{(h)}) = log(D_t) + \mathbb{E}_t[g_{t \to t+h}] \mathbb{E}_t[r_{t \to t+h}^{(h)}]$
- $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- Studies how monetary policy affects the equity term structure
- $log(P_t^{(h)}) = log(D_t) + \mathbb{E}_t[g_{t \to t+h}] \mathbb{E}_t[r_{t \to t+h}^{(h)}]$
- $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect)
- $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- Studies how monetary policy affects the equity term structure
- $log(P_t^{(h)}) = log(D_t) + \mathbb{E}_t[g_{t \to t+h}] \mathbb{E}_t[r_{t \to t+h}^{(h)}]$
- $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect)
- $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- Studies how monetary policy affects the equity term structure
- $log(P_t^{(h)}) = log(D_t) + \mathbb{E}_t[g_{t \to t+h}] \mathbb{E}_t[r_{t \to t+h}^{(h)}]$
- $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

Figure 1: Average Dividend Strip Return by Monetary Policy Shock

- $\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$
- $\iota_t \iota \equiv \widehat{\iota}_t = \rho_\iota \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$
- $\mu_{\overline{t}}$ affects $\widehat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\widehat{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\widehat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{l}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

 $\iota_t - \iota \equiv \widehat{\iota}_t = \rho_\iota \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$

- $\mu_{\overline{t}}$ affects $\hat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\widehat{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\widehat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

- $\mu_{\overline{t}}$ affects $\hat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\widehat{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\widehat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{l}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

- $\mu_{\overline{t}}$ affects $\hat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\overline{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\widehat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

- $\mu_{\overline{t}}$ affects $\hat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\widehat{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\widehat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

- $\mu_{\overline{t}}$ affects $\hat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\widehat{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\hat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

- $\mu_{\overline{t}}$ affects $\hat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\widehat{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\hat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

- $\mu_{\overline{t}}$ affects $\hat{\iota}_t$ but not $\mathbb{E}^{cb}[\widehat{GDP}]$ (traditional monetary policy)
- $\varepsilon_{\overline{t}}$ affects $\hat{\iota}_t$ and $\mathbb{E}^{cb}[\widehat{GDP}]$ (Fed information effect)
- Investors infer $\varepsilon_{\overline{t}}$ and $\mu_{\overline{t}}$ based on $\hat{\iota}_t$
- Short-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2}$
- Long-term $\mathbb{E}^{i}[\widehat{GDP}] \Rightarrow \sigma_{\epsilon}^{2}/\sigma_{\mu}^{2} + \rho_{g}, \rho_{\iota} + \alpha$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

$$\Delta d_t = \alpha_d + \beta_d \cdot \Delta \widehat{GDP}_t + \omega_t$$

 $r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}]$

$$r_{\overline{t}}^{\infty} = -\sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}}) [\Delta d_{t+j+1}]$$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

$$\Delta d_t = \alpha_d + \beta_d \cdot \Delta \widehat{GDP}_t + \omega_t$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}]$$

$$r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}}) [\Delta d_{t+j+1}]$$

$$\Delta \widehat{GDP}_{t+1} = \rho_g \cdot \Delta \widehat{GDP}_t + \varepsilon_{\overline{t}} + b \cdot \iota_t + w_{t+1}$$

$$\iota_{t} - \iota \equiv \widehat{\iota}_{t} = \rho_{\iota} \cdot \widehat{\iota}_{t-1} + \alpha \cdot \mathbb{E}_{\overline{t}}^{cb} [\Delta \widehat{GDP}_{t+1}] + \mu_{\overline{t}}$$

$$\Delta d_t = \alpha_d + \beta_d \cdot \Delta \widehat{GDP}_t + \omega_t$$

$$r_{\overline{t}}^{1} =
ho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}]$$

$$r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

Model Prediction 1: $\Delta P^{(h)}$ Forecasts Growth
Table 3: Real Dividend and GDP Forecasting

Horizon	1Q	2Q	3Q	4Q	5Q	6Q	7Q	8Q
Panel A: I	Real Divid	end Grow	th					
ΔP^{180}	0.669	0.874	0.965	1.147	1.063	0.947	0.542	0.462
	(0.242)	(0.236)	(0.306)	(0.363)	(0.362)	(0.340)	(0.219)	(0.193)
Adj. <i>R</i> ²	0.046	0.079	0.076	0.106	0.092	0.075	0.017	0.012

Table 3: Real Dividend and GDP Forecasting

Horizon	1Q	2Q	3Q	4Q	5Q	6Q	7Q	8Q
Panel A:	Real Divid	end Grow	th					
ΔP^{180}	0.669	0.874	0.965	1.147	1.063	0.947	0.542	0.462
	(0.242)	(0.236)	(0.306)	(0.363)	(0.362)	(0.340)	(0.219)	(0.193)
Adj. <i>R</i> ²	0.046	0.079	0.076	0.106	0.092	0.075	0.017	0.012

Table 3: Real Dividend and GDP Forecasting

Horizon	1Q	2Q	3Q	4Q	5Q	6Q	7Q	8Q
Panel A:	Real Divid	end Grow	th					
ΔP^{180}	0.669	0.874	0.965	1.147	1.063	0.947	0.542	0.462
	(0.242)	(0.236)	(0.306)	(0.363)	(0.362)	(0.340)	(0.219)	(0.193)
Adj. <i>R</i> ²	0.046	0.079	0.076	0.106	0.092	0.075	0.017	0.012
ΔP^{180}	0.604	0.792	0.899	1.099	1.057	0.875	0.397	0.322
	(0.233)	(0.227)	(0.346)	(0.410)	(0.428)	(0.417)	(0.322)	(0.247)
Δi_t^u	0.194	0.247	0.196	0.143	0.017	0.226	0.441	0.429
	(0.245)	(0.318)	(0.356)	(0.371)	(0.376)	(0.394)	(0.465)	(0.439)
Adj. <i>R</i> ²	0.040	0.077	0.070	0.098	0.081	0.069	0.029	0.025
Obs.	84	84	84	84	83	81	79	79

Table 3: Real Dividend and GDP Forecasting

Horizon	1Q	2Q	3Q	4Q	5Q	6Q	7Q	8Q
Panel B:	Real GDP	Growth						
ΔP^{180}	0.127	0.173	0.192	0.149	0.111	0.039	0.094	0.057
	(0.060)	(0.072)	(0.102)	(0.079)	(0.054)	(0.037)	(0.122)	(0.089)
Adj. <i>R</i> ²	0.034	0.044	0.041	0.019	0.018	-0.011	0.002	-0.008
ΔP^{180}	0.110	0.174	0.216	0.174	0.102	0.029	0.090	0.044
	(0.058)	(0.081)	(0.097)	(0.087)	(0.068)	(0.049)	(0.142)	(0.097)
Δi_t^u	0.052	-0.003	-0.072	-0.076	0.029	0.032	0.013	0.039
	(0.081)	(0.081)	(0.096)	(0.103)	(0.083)	(0.125)	(0.111)	(0.066)
Adj. <i>R</i> ²	0.033	0.032	0.039	0.018	0.008	-0.022	-0.011	-0.018
Obs.	84	84	84	83	81	79	79	77

 η_t^{lda} η_t^{sent}

	Short-term asset return (ΔP^{180})				
η_t^{lda}	0.243	0.240			
	(0.103)	(0.101)			
η_t^{sent}			0.015	0.015	
			(0.007)	(0.007)	
$\Delta \iota_t^s$		0.242		0.245	
		(0.104)		(0.105)	
Adj. <i>R</i> ²	0.036	0.068	0.027	0.059	
Obs.	128	128	128	128	

	Short-term asset return (ΔP^{180})					Market return (ΔP^{∞})			
η_t^{lda}	0.243	0.240			0.003	0.005			
	(0.103)	(0.101)		_	(0.016)	(0.015)			
η_t^{sent}			0.015	0.015			-0.002	-0.002	
			(0.007)	(0.007)			(0.001)	(0.001)	
$\Delta \iota_t^s$		0.242		0.245		-0.060		-0.059	
		(0.104)		(0.105)		(0.016)		(0.016)	
Adj. R ²	0.036	0.068	0.027	0.059	0.008	0.089	0.018	0.111	
Obs.	128	128	128	128	128	128	128	128	

Outline

The Paper

My Comments

Final Remarks

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:

- Term structure allows you to identify both effects on prices
- Estimate parameters (σ²_ε and σ²_μ) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

Contributes to debate on existence of Fed information effects

- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:

- Term structure allows you to identify both effects on prices
- Estimate parameters (σ²_ε and σ²_μ) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:

- Term structure allows you to identify both effects on prices
- Estimate parameters (σ²_ε and σ²_μ) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:

 $\uparrow i_t \implies \downarrow P_t$ (traditional monetary policy effect)

 $\circ \uparrow i_t \implies \uparrow P_t \quad (\mathsf{Fed information effect})$

- Term structure allows you to identify both effects on prices
- Estimate parameters (σ²_ε and σ²_μ) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:
 - $\circ \uparrow i_t \implies \downarrow P_t$ (traditional monetary policy effect)
 - $\circ \uparrow i_t \implies \uparrow P_t \quad (\text{Fed information effect})$
- Term structure allows you to identify both effects on prices
- Estimate parameters (σ²_ε and σ²_μ) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:
 - $\circ \uparrow i_t \implies \downarrow P_t \quad \text{(traditional monetary policy effect)}$
 - $\uparrow i_t \implies \uparrow P_t$ (Fed information effect)
- Term structure allows you to identify both effects on prices
- Estimate parameters (σ²_ε and σ²_μ) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:
 - $\circ \uparrow i_t \implies \downarrow P_t \quad \text{(traditional monetary policy effect)}$
 - $\circ \uparrow i_t \implies \uparrow P_t \quad (\text{Fed information effect})$
- Term structure allows you to identify both effects on prices
- Estimate parameters (σ²_ε and σ²_μ) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:

 $\circ \uparrow i_t \implies \downarrow P_t \quad \text{(traditional monetary policy effect)}$

• $\uparrow i_t \implies \uparrow P_t$ (Fed information effect)

- Term structure allows you to identify both effects on prices
- Estimate parameters (σ_{ϵ}^2 and σ_{μ}^2) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

- Contributes to debate on existence of Fed information effects
- My view: it can do more
- The mixed evidence is a consequence of offsetting effects:

 $\circ \uparrow i_t \implies \downarrow P_t \quad \text{(traditional monetary policy effect)}$

• $\uparrow i_t \implies \uparrow P_t$ (Fed information effect)

- Term structure allows you to identify both effects on prices
- Estimate parameters (σ_{ϵ}^2 and σ_{μ}^2) to match the magnitude and term structure of the effect of monetary policy shocks
- Quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices.
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$\begin{aligned} \frac{1}{t} &= \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] - \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[i_{t+1}] \\ &= \rho \cdot \beta_d \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta GDP_{t+1}] - \rho \cdot \Delta \iota_{\overline{t}}^s \\ &= \rho \cdot \left[\beta_d \cdot \frac{PDP^{-1}}{(1 - 1)^2} \cdot \frac{\alpha \cdot b \cdot \sigma_{\mu}^2 + \sigma_{\alpha \epsilon}}{(1 - 1)^2} - 1\right] \cdot \mathcal{L} \end{aligned}$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] - \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[i_{t+1}]$$

 $= \rho \cdot \beta_d \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta GDP_{t+1}] - \rho \cdot \Delta \iota_{\overline{t}}^s$

$$= \rho \cdot \left[\beta_{d} \cdot \frac{PDP^{-1}}{(1 - \alpha \cdot b)} \cdot \frac{\alpha \cdot b \cdot \sigma_{\mu}^{2} + \sigma_{\alpha \epsilon}}{\alpha \cdot (\sigma_{\mu}^{2} + \sigma_{\alpha \epsilon})} - 1 \right] \cdot \Delta \iota_{t}^{s}$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] - \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[i_{t+1}]$$
$$= \rho \cdot \beta_{d} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta GDP_{t+1}] - \rho \cdot \Delta \iota_{\overline{t}}^{\underline{s}}$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model's premise is that the interest rate varies over time
- But somehow this does not get incorporated into prices
- There is an internal inconsistency
- Accounting for interest rate variation (β_d turns out to matter):

$$\begin{aligned} r_{\overline{t}}^{1} &= \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] - \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[i_{t+1}] \\ &= \rho \cdot \beta_{d} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta GDP_{t+1}] - \rho \cdot \Delta \iota_{\overline{t}}^{s} \\ &= \rho \cdot \left[\beta_{d} \cdot \frac{PDP^{-1}}{(1 - \alpha \cdot b)} \cdot \frac{\alpha \cdot b \cdot \sigma_{\mu}^{2} + \sigma_{\alpha\epsilon}}{\alpha \cdot (\sigma_{\mu}^{2} + \sigma_{\alpha\epsilon})} - 1\right] \cdot \Delta \iota_{\overline{t}}^{s} \end{aligned}$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

$$r^1_{\overline{t}} =
ho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r^{\infty}_{\overline{t}} = \sum_{j=0}^{\infty}
ho^j \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

• The model has no risk premium effect

	Sample Used for VAR				
	1/73-12/02	5/89-12/02			
Current excess return	(11.55)(3.87)				
Future excess returns	6.10 (1.74)	3.29 (1.10)			
Real interest rate	0.64	0.77			
Dividends	(1.03) (4.82) (1.73)	(1.87) -6.96 (2.35)			

The Impact of Monetary Policy on Dividends, Interest Rates, and Future Returns

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

$$r^1_{\overline{t}} =
ho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r^{\infty}_{\overline{t}} = \sum_{j=0}^{\infty}
ho^j \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model has no risk premium effect
- Can you replicate Table 3 after replacing future growth with future returns?
- Your mechanism likely drives the term structure pattern
- But quantitatively it is important to account for $\mathbb{E}_t[r]$
- It matters to quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

$$r^1_{\overline{t}} =
ho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r^{\infty}_{\overline{t}} = \sum_{j=0}^{\infty}
ho^j \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model has no risk premium effect
- Can you replicate Table 3 after replacing future growth with future returns?
- Your mechanism likely drives the term structure pattern
- But quantitatively it is important to account for $\mathbb{E}_t[r]$
- It matters to quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model has no risk premium effect
- Can you replicate Table 3 after replacing future growth with future returns?
- Your mechanism likely drives the term structure pattern
- But quantitatively it is important to account for $\mathbb{E}_t[r]$
- It matters to quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel
3) No Risk Premium Variation?

$$r_{\overline{t}}^{1} = \rho \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1}] \quad \& \quad r_{\overline{t}}^{\infty} = \sum_{j=0}^{\infty} \rho^{j} \cdot (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j+1}]$$

- The model has no risk premium effect
- Can you replicate Table 3 after replacing future growth with future returns?
- Your mechanism likely drives the term structure pattern
- But quantitatively it is important to account for $\mathbb{E}_t[r]$
- It matters to quantify the importance of the Fed information effect vis-à-vis the traditional monetary policy channel

4) The Term Structure of Expected Growth

Ignoring discount rate variation (argument applies regardless):

- If
- Then

4) The Term Structure of Expected Growth

• Ignoring discount rate variation (argument applies regardless): $\Delta P_{\overline{t}}^{(2)} = (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t \to t+1}] + (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1 \to t+2}]$

• Then

4) The Term Structure of Expected Growth

• Ignoring discount rate variation (argument applies regardless): $\Delta P_{\overline{t}}^{(2)} = (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t \to t+1}] + (\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+1 \to t+2}]$

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

Then

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

Final Remarks

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

 Table 2: Asset Return on Monetary Policy Shock

	ΔP^{180}	ΔP^{360}	ΔP^{540}	ΔP^{∞}
Δi_t^u	0.249	0.040	0.021	-0.059
	(0.106)	(0.041)	(0.031)	(0.016)

Final Remarks

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

 Table 2: Asset Return on Monetary Policy Shock

	ΔP^{180}	ΔP^{360}	ΔP^{540}	ΔP^{∞}
Δi_t^u	0.249	0.040	0.021	-0.059
	(0.106)	(0.041)	(0.031)	(0.016)

Final Remarks

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

 Table 2: Asset Return on Monetary Policy Shock

	ΔP^{180}	ΔP^{360}	ΔP^{540}	ΔP^{∞}
Δi_t^u	0.249	0.040	0.021	-0.059
	(0.106)	(0.041)	(0.031)	(0.016)

Final Remarks

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

 Table 2: Asset Return on Monetary Policy Shock

	ΔP^{180}	ΔP^{360}	ΔP^{540}	ΔP^{∞}
Δi_t^u	0.249	0.040	0.021	-0.059
	(0.106)	(0.041)	(0.031)	(0.016)

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

- Project $\Delta d_{t \rightarrow t+180}$ onto $\Delta i_t \Rightarrow$ positive β
- Project $\Delta d_{t+180
 ightarrow t+360}$ onto $\Delta i_t \Rightarrow$ negative eta
- Project $\Delta d_{t+180 o t+360}$ onto $\Delta P_{\overline{t}}^{(360)} \Delta P_{\overline{t}}^{(180)} \Rightarrow$ positive eta

Final Remarks

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

- Project $\Delta d_{t \rightarrow t+180}$ onto $\Delta i_t \Rightarrow$ positive β
- Project $\Delta d_{t+180 \rightarrow t+360}$ onto $\Delta i_t \Rightarrow$ negative β
- Project $\Delta d_{t+180 o t+360}$ onto $\Delta P_{\overline{t}}^{(360)} \Delta P_{\overline{t}}^{(180)} \Rightarrow$ positive eta

Final Remarks

4) The Term Structure of Expected Growth

• If
$$(\mathbb{E}_{\overline{t}} - \mathbb{E}_{\underline{t}})[\Delta d_{t+j \to t+j+1}] = \alpha_j + \beta_j \cdot \Delta i_t + \epsilon_{1,t}$$

• Then
$$\Delta P_{\overline{t}}^{(2)} = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \cdot \Delta i_t + \epsilon_t$$

- Project $\Delta d_{t \rightarrow t+180}$ onto $\Delta i_t \Rightarrow$ positive β
- Project $\Delta d_{t+180 \rightarrow t+360}$ onto $\Delta i_t \Rightarrow$ negative β
- Project $\Delta d_{t+180 \rightarrow t+360}$ onto $\Delta P_{\overline{t}}^{(360)} \Delta P_{\overline{t}}^{(180)} \Rightarrow$ positive β

Outline

The Paper

My Comments

- Very interesting and relevant paper (I recommend):
 - "Fed information effects" are incorporated into prices
 - $\circ \uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) $\circ \uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)
- It would be useful to:

- Very interesting and relevant paper (I recommend):
 - "Fed information effects" are incorporated into prices
 - $\circ \uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) $\circ \uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)
- It would be useful to:

- Very interesting and relevant paper (I recommend):
 - $\circ~$ "Fed information effects" are incorporated into prices
 - $\circ \uparrow i_t \implies \downarrow P_t^{(Equity)} \quad \text{(traditional monetary policy effect)}$
 - $\circ \uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)
- It would be useful to:

- Very interesting and relevant paper (I recommend):
 - $\circ~$ "Fed information effects" are incorporated into prices
 - $\circ \uparrow i_t \implies \downarrow P_t^{(Equity)} \quad \text{(traditional monetary policy effect)}$

 $\circ \uparrow i_t \implies \uparrow P_t^{(DivStrip)} \quad (\text{Fed information effect})$

• It would be useful to:

- Very interesting and relevant paper (I recommend):
 - "Fed information effects" are incorporated into prices
 - $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)
- It would be useful to:
 - Quantify the importance of the "Fed information effect" vis-à-vis the traditional monetary policy channel
 - $\circ~$ Account for the price effect of interest rate variation (model)
 - Incorporate risk premium variation (model)
 - Explore the term structure of expected growth (data)
- Good luck!

• Very interesting and relevant paper (I recommend):

• "Fed information effects" are incorporated into prices

• $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- It would be useful to:
 - Quantify the importance of the "Fed information effect" vis-à-vis the traditional monetary policy channel
 - Account for the price effect of interest rate variation (model)
 - Incorporate risk premium variation (model)
 - Explore the term structure of expected growth (data)
- Good luck!

• Very interesting and relevant paper (I recommend):

• "Fed information effects" are incorporated into prices

• $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- It would be useful to:
 - Quantify the importance of the "Fed information effect" vis-à-vis the traditional monetary policy channel
 - Account for the price effect of interest rate variation (model)
 - Incorporate risk premium variation (model)
 - Explore the term structure of expected growth (data)

• Good luck!

• Very interesting and relevant paper (I recommend):

• "Fed information effects" are incorporated into prices

• $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- It would be useful to:
 - Quantify the importance of the "Fed information effect" vis-à-vis the traditional monetary policy channel
 - Account for the price effect of interest rate variation (model)
 - Incorporate risk premium variation (model)
 - Explore the term structure of expected growth (data)

Good luck!

• Very interesting and relevant paper (I recommend):

• "Fed information effects" are incorporated into prices

• $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- It would be useful to:
 - Quantify the importance of the "Fed information effect" vis-à-vis the traditional monetary policy channel
 - Account for the price effect of interest rate variation (model)
 - Incorporate risk premium variation (model)
 - Explore the term structure of expected growth (data)

Good luck!

• Very interesting and relevant paper (I recommend):

• "Fed information effects" are incorporated into prices

• $\uparrow i_t \implies \downarrow P_t^{(Equity)}$ (traditional monetary policy effect) • $\uparrow i_t \implies \uparrow P_t^{(DivStrip)}$ (Fed information effect)

- It would be useful to:
 - Quantify the importance of the "Fed information effect" vis-à-vis the traditional monetary policy channel
 - Account for the price effect of interest rate variation (model)
 - Incorporate risk premium variation (model)
 - Explore the term structure of expected growth (data)
- Good luck!