

Financial Intermediaries and Demand for Duration

Alberto Plazzi, Andrea Tamoni, and Marco Zanotti

Discussant: Andrei S. Gonçalves

2024 MFA

Outline

The Paper

My Comments

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, Dur (Gonçalves (2021, JFE))
 - Estimate demand system with Dur (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of

• Three key findings:

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, *Dur* (Gonçalves (2021, JFE))
 - Estimate demand system with Dur (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of

• Three key findings:

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, *Dur* (Gonçalves (2021, JFE))
 - Estimate demand system with *Dur* (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of

• Three key findings:

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, *Dur* (Gonçalves (2021, JFE))
 - Estimate demand system with Dur (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of
 - * Primary Dealers
 - * Banks
 - * Pension Funds
 - * Insurance Companies
 - Three key findings:

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, *Dur* (Gonçalves (2021, JFE))
 - Estimate demand system with Dur (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of
 - * Primary Dealers
 - * Banks
 - * Pension Funds
 - * Insurance Companies
 - Three key findings:
 - 1) $\theta_{Dur} > 0$ on average (except for Banks)
 - 2) \uparrow Frictions $\Rightarrow \downarrow \theta_{Dur}$
 - 3) Shifts in θ_{Dur} have large effect on asset prices

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, *Dur* (Gonçalves (2021, JFE))
 - Estimate demand system with Dur (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of
 - * Primary Dealers
 - * Banks
 - * Pension Funds
 - * Insurance Companies
 - Three key findings:

1) $\theta_{Dur} > 0$ on average (except for Banks)

- 2) \uparrow Frictions $\Rightarrow \downarrow \theta_{Dur}$
- 3) Shifts in θ_{Dur} have large effect on asset prices

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, *Dur* (Gonçalves (2021, JFE))
 - Estimate demand system with *Dur* (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of
 - * Primary Dealers
 - * Banks
 - * Pension Funds
 - * Insurance Companies
 - Three key findings:
 - 1) $\theta_{Dur} > 0$ on average (except for Banks)
 - 2) \uparrow Frictions $\Rightarrow \downarrow \theta_{Dur}$
 - 3) Shifts in θ_{Dur} have large effect on asset prices

- Literature: there is a Short Duration Premium
- Reason: LT investors have high demand for LT cash flows
- This paper: explore intermediaries demand for LT cash flows
 - Obtain equity duration proxy, *Dur* (Gonçalves (2021, JFE))
 - Estimate demand system with *Dur* (Koijen et al (2024, REStud))
 - Study the *Dur* demand (θ_{Dur}) of
 - * Primary Dealers
 - * Banks
 - * Pension Funds
 - * Insurance Companies
 - Three key findings:
 - 1) $\theta_{Dur} > 0$ on average (except for Banks)
 - 2) \uparrow Frictions $\Rightarrow \downarrow \theta_{Dur}$
 - 3) Shifts in θ_{Dur} have large effect on asset prices

The Dur Demand

The Relevance of Dur Demand

C: Insurance Companies.

The Link Between Dur Demand and Capital Constraints

The Asset Pricing Impact of Dur Demand

Outline

The Paper

My Comments

• $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :

• Directly consider the reinvestment risk hedging demand:

- Model the value-wealth ratio as vw_{t+1} = a_t + s_{t+1}/(γ_t 1), so Gonçalves (2021, JF)
- Reasonable to say $\phi_{n,t}^s = -b \cdot Dur_{n,t}$, so

$$\bullet \ \uparrow \ \gamma_t \quad \Rightarrow \quad \downarrow \ \theta_{\mathit{Dur},t} = 1/\gamma_t \cdot b$$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\circ \uparrow \sigma(Dur) \Rightarrow \uparrow$ spread in $\beta_{\text{ReinvRisk}}$ across duration deciles
 - But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

- Model the value-wealth ratio as vw_{t+1} = a_t + s_{t+1}/(γ_t 1), so Gonçalves (2021, JF)
- Reasonable to say $\phi_{n,t}^s = -b \cdot Dur_{n,t}$, so

$$\bullet \ \uparrow \ \gamma_t \quad \Rightarrow \quad \downarrow \ \theta_{\mathit{Dur},t} = 1/\gamma_t \cdot b$$

• $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :

• $\uparrow \sigma(Dur) \Rightarrow \uparrow$ spread in $\beta_{\text{ReinvRisk}}$ across duration deciles

• But the reinvestment risk hedging demand is not high

• Directly consider the reinvestment risk hedging demand:

 Model the value-wealth ratio as vw_{t+1} = a_t + s_{t+1}/(γ_t - 1), so Gonçalves (2021, JF)

• Reasonable to say $\phi_{n,t}^s = -b \cdot Dur_{n,t}$, so

•
$$\uparrow \gamma_t \Rightarrow \downarrow \theta_{Dur,t} = 1/\gamma_t \cdot b$$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\text{ReinvRisk}}$ across duration deciles
 - $\circ~$ But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

- Model the value-wealth ratio as vw_{t+1} = a_t + s_{t+1}/(γ_t 1), so Gonçalves (2021, JF)
- Reasonable to say $\phi_{n,t}^s = -b \cdot Dur_{n,t}$, so

•
$$\uparrow \gamma_t \quad \Rightarrow \quad \downarrow \ \theta_{Dur,t} = 1/\gamma_t \cdot b$$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\text{ReinvRisk}}$ across duration deciles
 - $\circ~$ But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

$$w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot (\gamma_t - 1) \cdot \phi_{n,t}^{vw}$$

where $\phi_{n,t}^{vw}$ is asset *n* coefficient in vw_t projection onto returns

- Model the value-wealth ratio as vw_{t+1} = a_t + s_{t+1}/(γ_t 1), so Gonçalves (2021, JF)
- Reasonable to say $\phi_{n,t}^s = -b \cdot Dur_{n,t}$, so

$$\bullet \ \uparrow \ \gamma_t \quad \Rightarrow \quad \downarrow \ \theta_{\mathit{Dur},t} = 1/\gamma_t \cdot b$$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\text{ReinvRisk}}$ across duration deciles
 - $\circ~$ But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

$$w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot (\gamma_t - 1) \cdot \phi_{n,t}^{vw}$$

where $\phi_{n,t}^{vw}$ is asset *n* coefficient in vw_t projection onto returns

- Model the value-wealth ratio as vw_{t+1} = a_t + s_{t+1}/(γ_t 1), so Gonçalves (2021, JF)
- Reasonable to say $\phi_{n,t}^s = -b \cdot Dur_{n,t}$, so

•
$$\uparrow \gamma_t \quad \Rightarrow \quad \downarrow \ \theta_{Dur,t} = 1/\gamma_t \cdot b$$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\text{ReinvRisk}}$ across duration deciles
 - $\circ~$ But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

$$w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot (\gamma_t - 1) \cdot \phi_{n,t}^{vw}$$

where $\phi_{n,t}^{vw}$ is asset *n* coefficient in vw_t projection onto returns

• Model the value-wealth ratio as $vw_{t+1} = a_t + s_{t+1}/(\gamma_t - 1)$, so Gonçalves (2021, JF)

• Reasonable to say
$$\phi_{n,t}^s = -b \cdot Dur_{n,t}$$
, so

•
$$\uparrow \gamma_t \Rightarrow \downarrow \theta_{Dur,t} = 1/\gamma_t \cdot b$$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\rm ReinvRisk}$ across duration deciles
 - But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

$$w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot (\gamma_t - 1) \cdot \phi_{n,t}^{vw}$$

where $\phi_{n,t}^{vw}$ is asset *n* coefficient in vw_t projection onto returns

• Model the value-wealth ratio as $vw_{t+1} = a_t + s_{t+1}/(\gamma_t - 1)$, so Gonçalves (2021, JF) $w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot \phi_{n,t}^s$

Reasonable to say
$$\phi_{n,t}^s = -b \cdot Dur_{n,t}$$
, so

$$\bullet \ \uparrow \ \gamma_t \quad \Rightarrow \quad \downarrow \ \theta_{\textit{Dur},t} = 1/\gamma_t \cdot \textit{b}$$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\rm ReinvRisk}$ across duration deciles
 - $\circ~$ But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

$$w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot (\gamma_t - 1) \cdot \phi_{n,t}^{vw}$$

where $\phi_{n,t}^{vw}$ is asset *n* coefficient in vw_t projection onto returns

• Model the value-wealth ratio as $vw_{t+1} = a_t + s_{t+1}/(\gamma_t - 1)$, so Gonçalves (2021, JF) $w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot \phi_{n,t}^s$

• Reasonable to say
$$\phi_{n,t}^s = -b \cdot Dur_{n,t}$$
, so

$$w_{n,t} = w_{n,t}^{myopic} + 1/\gamma_t \cdot b \cdot Dur_{n,t}$$

• $\uparrow \gamma_t \Rightarrow \downarrow \theta_{Dur,t} = 1/\gamma_t \cdot b$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\rm ReinvRisk}$ across duration deciles
 - But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

$$w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot (\gamma_t - 1) \cdot \phi_{n,t}^{vw}$$

where $\phi_{n,t}^{vw}$ is asset *n* coefficient in vw_t projection onto returns

• Model the value-wealth ratio as $vw_{t+1} = a_t + s_{t+1}/(\gamma_t - 1)$, so Gonçalves (2021, JF) $w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot \phi_{n,t}^s$

• Reasonable to say
$$\phi_{n,t}^s = -b \cdot Dur_{n,t}$$
, so

$$w_{n,t} = w_{n,t}^{myopic} + 1/\gamma_t \cdot b \cdot Dur_{n,t}$$

• $\uparrow \gamma_t \Rightarrow \downarrow \theta_{Dur,t} = 1/\gamma_t \cdot b$

- $\sigma(Dur)$ does not capture the reinvestment risk effect on θ_{Dur} :
 - $\uparrow \sigma(\textit{Dur}) \Rightarrow \uparrow$ spread in $\beta_{\rm ReinvRisk}$ across duration deciles
 - But the reinvestment risk hedging demand is not high
- Directly consider the reinvestment risk hedging demand:

$$w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot (\gamma_t - 1) \cdot \phi_{n,t}^{vw}$$

where $\phi_{n,t}^{vw}$ is asset *n* coefficient in vw_t projection onto returns

• Model the value-wealth ratio as $vw_{t+1} = a_t + s_{t+1}/(\gamma_t - 1)$, so Gonçalves (2021, JF) $w_{n,t} = w_{n,t}^{myopic} - 1/\gamma_t \cdot \phi_{n,t}^s$

• Reasonable to say
$$\phi_{n,t}^s = -b \cdot Dur_{n,t}$$
, so

$$w_{n,t} = w_{n,t}^{myopic} + 1/\gamma_t \cdot b \cdot Dur_{n,t}$$

•
$$\uparrow \gamma_t \Rightarrow \downarrow \theta_{Dur,t} = 1/\gamma_t \cdot b$$

$$\theta_{Dur,t+1}^{\text{Primary Dealer}} = a + b' x_t + \epsilon_{t+1}$$

$$\theta_{Dur,t+1}^{\text{Primary Dealer}} = a + b' x_t + \epsilon_{t+1}$$

	[1]	
HMK Equity Capital Ratio	0.118***	
Shiller CAPE Ratio $(1/\gamma_t)$		
R_{adj}^2	20.8%	

$$\theta_{Dur,t+1}^{\text{Primary Dealer}} = a + b' x_t + \epsilon_{t+1}$$

	[1]	[2]	
HMK Equity Capital Ratio	0.118***		
Shiller CAPE Ratio $(1/\gamma_t)$		0.178***	
R^2_{adj}	20.8%	47.7%	

$$\theta_{Dur,t+1}^{\text{Primary Dealer}} = a + b' x_t + \epsilon_{t+1}$$

	[1]	[2]	[3]
HMK Equity Capital Ratio	0.118***		-0.028
Shiller CAPE Ratio $(1/\gamma_t)$		0.178***	0.198***
R^2_{adj}	20.8%	47.7%	47.9%

The Paper

My Comments

Final Remarks

$$\theta_{Dur,t}^{\text{Primary Dealer}} = a + b' x_t + \epsilon_t$$

	[1]	[2]	[3]
HMK Equity Capital Ratio	0.120***		-0.027
Shiller CAPE Ratio $(1/\gamma_t)$		0.181***	0.201***
R_{adj}^2	21.1%	48.4%	48.6%

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$

Relevant asset pricing questions:

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A $heta_{Dur}$ increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$

Relevant asset pricing questions:

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period

• But (to me) the most interesting question is the effect on $\mathbb{E}[r]$

Relevant asset pricing questions:

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$

 $\circ~$ Suppose θ_{Dur} is permanently higher

 $\circ~$ This should induce a decline in $\mathbb{E}[r]$ for long duration firms

• Relevant asset pricing questions:

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$
 - Suppose θ_{Dur} is permanently higher
 - \circ This should induce a decline in $\mathbb{E}[r]$ for long duration firms
- Relevant asset pricing questions:

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$
 - Suppose θ_{Dur} is permanently higher
 - $\circ~$ This should induce a decline in $\mathbb{E}[r]$ for long duration firms
- Relevant asset pricing questions:

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$
 - Suppose θ_{Dur} is permanently higher
 - $\circ~$ This should induce a decline in $\mathbb{E}[r]$ for long duration firms
- Relevant asset pricing questions:
 - Can θ_{Dur} explain the average Short Duration Premium?

• Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$
 - Suppose θ_{Dur} is permanently higher
 - $\circ~$ This should induce a decline in $\mathbb{E}[r]$ for long duration firms
- Relevant asset pricing questions:
 - Can θ_{Dur} explain the average Short Duration Premium? Counterfactual Short Duration Premium under $\theta_{Dur} = 0$ Can θ_{Dur} explain the Short Duration Premium variation

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$
 - Suppose θ_{Dur} is permanently higher
 - $\circ~$ This should induce a decline in $\mathbb{E}[r]$ for long duration firms
- Relevant asset pricing questions:
 - Can θ_{Dur} explain the average Short Duration Premium?
 - * Counterfactual Short Duration Premium under $\theta_{Dur,i} = 0$
 - Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$
 - Suppose θ_{Dur} is permanently higher
 - $\circ~$ This should induce a decline in $\mathbb{E}[r]$ for long duration firms
- Relevant asset pricing questions:
 - Can θ_{Dur} explain the average Short Duration Premium?
 - * Counterfactual Short Duration Premium under $\theta_{Dur,i} = 0$
 - Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?

Counterfactual Short Duration Premium under $\theta_{Dur,i,t} = \theta_{Dur,i}$ 8/10

- "increased demand toward high duration [...] with companies at the long-end of the duration spectrum experiencing large capital gains at the expenses of companies with proximate cash-flows"
- So, this effect is about price impact not about equilibrium $\mathbb{E}[r]$
- A θ_{Dur} increase generates a price impact in the same period
- But (to me) the most interesting question is the effect on $\mathbb{E}[r]$
 - Suppose θ_{Dur} is permanently higher
 - $\circ~$ This should induce a decline in $\mathbb{E}[r]$ for long duration firms
- Relevant asset pricing questions:
 - Can θ_{Dur} explain the average Short Duration Premium?
 - * Counterfactual Short Duration Premium under $\theta_{Dur,i} = 0$
 - Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?
 - * Counterfactual Short Duration Premium under $\theta_{Dur,i,t} = \overline{\theta}_{Dur,i}$ 8/10

Some Other Comments

- 1) Frictions mechanism is very similar to Ge (2022, JF)
- 2) Equation 1 does not reflect the ICAPM demand equation
 - There is no demand for $\mathbb{E}[\widetilde{r}_{t+1 \rightarrow t+H}]$
 - There is demand for $\mathbb{E}[\tilde{r}_{t+1}]$ and covariance with $\mathbb{E}[r_{m,t \to t+H}]$
 - $\circ~$ Replace it with demand equation I provided in comment (1)
- 3) Intermediaries overweighting low beta stocks
 - You argue intermediaries overweight low beta stocks
 - You argue this is consistent with Frazzini, Pedersen (2014, JFE)
 - But their point is intermediaries overweight high beta stocks
 - They want leverage and constraints bind on average
 - This overweighing decreases their $\mathbb{E}[r]$ (low beta anomaly)

Outline

The Paper

My Comments

Quite nice paper (highly recommend reading)

• It would be useful to:

- Quite nice paper (highly recommend reading)
 - It adds *Dur* to a demand system (with $\theta_{Dur} > 0$)
 - $\circ~$ It shows intermediaries' $\theta_{\it Dur}$ decrease with frictions
 - \circ It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - \circ It shows intermediaries' $heta_{Dur}$ decrease with frictions
 - \circ It also argues intermediaries' $heta_{Dur}$ have large price impact
- It would be useful to:

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - It shows intermediaries' θ_{Dur} decrease with frictions
 - \circ It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - It shows intermediaries' θ_{Dur} decrease with frictions
 - $\circ~$ It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - It shows intermediaries' θ_{Dur} decrease with frictions
 - It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:
 - Explore the frictions mechanism (I think it is through γ_t)
 - $\circ~$ Can θ_{Dur} explain the average Short Duration Premium?
 - $\circ~$ Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?
- Good luck!

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - It shows intermediaries' θ_{Dur} decrease with frictions
 - $\circ~$ It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:
 - Explore the frictions mechanism (I think it is through γ_t)
 - Can θ_{Dur} explain the average Short Duration Premium?
 - Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?
- Good luck!

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - It shows intermediaries' θ_{Dur} decrease with frictions
 - $\circ~$ It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:
 - Explore the frictions mechanism (I think it is through γ_t)
 - Can θ_{Dur} explain the average Short Duration Premium?
 - Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?
- Good luck!

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - It shows intermediaries' θ_{Dur} decrease with frictions
 - $\circ~$ It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:
 - Explore the frictions mechanism (I think it is through γ_t)
 - Can θ_{Dur} explain the average Short Duration Premium?
 - Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?

- Quite nice paper (highly recommend reading)
 - It adds Dur to a demand system (with $\theta_{Dur} > 0$)
 - It shows intermediaries' θ_{Dur} decrease with frictions
 - It also argues intermediaries' θ_{Dur} have large price impact
- It would be useful to:
 - Explore the frictions mechanism (I think it is through γ_t)
 - Can θ_{Dur} explain the average Short Duration Premium?
 - Can $\theta_{Dur,t}$ explain the Short Duration Premium variation?
- Good luck!