

The Factor Model Failure Puzzle

Fahiz Baba-Yara, Brian Boyer and Carter Davis

Discussant: Andrei S. Gonçalves

2024 MFA

Outline

The Paper

My Comments

Final Remarks

- Factor Models: $\mathbb{E}[r] = eta \cdot \mathbb{E}[r^*]$, with $r^* = \max$ SR portfolio
- First factor model was the CAPM $(r^* = r_m)$
- Then we started to add other factors:

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM $(r^* = r_m)$
- Then we started to add other factors:

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM $(r^* = r_m)$

• Then we started to add other factors:

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM $(r^* = r_m)$
- Then we started to add other factors:

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML} + b_{\rm CMA} \cdot r_{\rm CMA} + b_{\rm RMW} \cdot r_{\rm RMW}$

 $\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{I/A} \cdot r_{I/A} + b_{\text{ROE}} \cdot r_{\text{ROE}}$

r* built using Machine Learning techniques

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM $(r^* = r_m)$
- Then we started to add other factors:

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML} + b_{\rm CMA} \cdot r_{\rm CMA} + b_{\rm RMW} \cdot r_{\rm RMW}$

 $\circ \mathbf{r}^* = \mathbf{b}_m \cdot \mathbf{r}_m + \mathbf{b}_{\text{Size}} \cdot \mathbf{r}_{\text{Size}} + \mathbf{b}_{\text{I/A}} \cdot \mathbf{r}_{\text{I/A}} + \mathbf{b}_{\text{ROE}} \cdot \mathbf{r}_{\text{ROE}}$

r* built using Machine Learning techniques

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM ($r^* = r_m$)
- Then we started to add other factors:

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

- $\circ r^* = b_m \cdot r_m + b_{\text{SMB}} \cdot r_{\text{SMB}} + b_{\text{HML}} \cdot r_{\text{HML}} + b_{\text{CMA}} \cdot r_{\text{CMA}} + b_{\text{RMW}} \cdot r_{\text{RMW}}$
- $\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{\text{I/A}} \cdot r_{\text{I/A}} + b_{\text{ROE}} \cdot r_{\text{ROE}}$

 \circ r^* built using Machine Learning techniques

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM ($r^* = r_m$)
- Then we started to add other factors:

÷

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ \ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML} + b_{\rm CMA} \cdot r_{\rm CMA} + b_{\rm RMW} \cdot r_{\rm RMW}$

$$\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{\text{I/A}} \cdot r_{\text{I/A}} + b_{\text{ROE}} \cdot r_{\text{ROE}}$$

• r* built using Machine Learning techniques

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM ($r^* = r_m$)
- Then we started to add other factors:

÷

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ r^* = b_m \cdot r_m + b_{\text{SMB}} \cdot r_{\text{SMB}} + b_{\text{HML}} \cdot r_{\text{HML}} + b_{\text{CMA}} \cdot r_{\text{CMA}} + b_{\text{RMW}} \cdot r_{\text{RMW}}$

$$\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{\text{I/A}} \cdot r_{\text{I/A}} + b_{\text{ROE}} \cdot r_{\text{ROE}}$$

• r* built using Machine Learning techniques

The Paper

This Paper in a Nutshell

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM ($r^* = r_m$)
- Then we started to add other factors:

÷

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ r^* = b_m \cdot r_m + b_{\text{SMB}} \cdot r_{\text{SMB}} + b_{\text{HML}} \cdot r_{\text{HML}} + b_{\text{CMA}} \cdot r_{\text{CMA}} + b_{\text{RMW}} \cdot r_{\text{RMW}}$

$$\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{\text{I/A}} \cdot r_{\text{I/A}} + b_{\text{ROE}} \cdot r_{\text{ROE}}$$

• r* built using Machine Learning techniques

- This paper: the "Factor Model Failure Puzzle"
 - Expectation: $\uparrow T \Rightarrow$ better r^* estimates $\Rightarrow r^*$ converge
 - \circ Finding: no r^* prices well the r^* from other models OOS
 - \circ Explanation: large T but also many $\mathbb{E}[r]$ predictors

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM ($r^* = r_m$)
- Then we started to add other factors:

÷

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ r^* = b_m \cdot r_m + b_{\text{SMB}} \cdot r_{\text{SMB}} + b_{\text{HML}} \cdot r_{\text{HML}} + b_{\text{CMA}} \cdot r_{\text{CMA}} + b_{\text{RMW}} \cdot r_{\text{RMW}}$

$$\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{\text{I/A}} \cdot r_{\text{I/A}} + b_{\text{ROE}} \cdot r_{\text{ROE}}$$

- r* built using Machine Learning techniques
- This paper: the "Factor Model Failure Puzzle"
 - Expectation: $\uparrow T \Rightarrow$ better r^* estimates $\Rightarrow r^*$ converge
 - Finding: no *r** prices well the *r** from other models OOS
 - Explanation: large T but also many $\mathbb{E}[r]$ predictors

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM ($r^* = r_m$)
- Then we started to add other factors:

÷

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ r^* = b_m \cdot r_m + b_{\text{SMB}} \cdot r_{\text{SMB}} + b_{\text{HML}} \cdot r_{\text{HML}} + b_{\text{CMA}} \cdot r_{\text{CMA}} + b_{\text{RMW}} \cdot r_{\text{RMW}}$

$$\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{\text{I/A}} \cdot r_{\text{I/A}} + b_{\text{ROE}} \cdot r_{\text{ROE}}$$

- r* built using Machine Learning techniques
- This paper: the "Factor Model Failure Puzzle"
 - Expectation: $\uparrow T \Rightarrow$ better r^* estimates $\Rightarrow r^*$ converge
 - Finding: no r^* prices well the r^* from other models OOS
 - Explanation: large T but also many $\mathbb{E}[r]$ predictors

- Factor Models: $\mathbb{E}[r] = \beta \cdot \mathbb{E}[r^*]$, with $r^* = \max SR$ portfolio
- First factor model was the CAPM ($r^* = r_m$)
- Then we started to add other factors:

÷

 $\circ r^* = b_m \cdot r_m + b_{\rm SMB} \cdot r_{\rm SMB} + b_{\rm HML} \cdot r_{\rm HML}$

 $\circ r^* = b_m \cdot r_m + b_{\text{SMB}} \cdot r_{\text{SMB}} + b_{\text{HML}} \cdot r_{\text{HML}} + b_{\text{CMA}} \cdot r_{\text{CMA}} + b_{\text{RMW}} \cdot r_{\text{RMW}}$

$$\circ r^* = b_m \cdot r_m + b_{\text{Size}} \cdot r_{\text{Size}} + b_{\text{I/A}} \cdot r_{\text{I/A}} + b_{\text{ROE}} \cdot r_{\text{ROE}}$$

- r* built using Machine Learning techniques
- This paper: the "Factor Model Failure Puzzle"
 - Expectation: $\uparrow T \Rightarrow$ better r^* estimates $\Rightarrow r^*$ converge
 - Finding: no r^* prices well the r^* from other models OOS
 - Explanation: large T but also many $\mathbb{E}[r]$ predictors

My Comments

Models for r^* Estimation

Table 1. Zoo of Asset Pricing Models

Initialism	Factor Method $f(Z_t)$	MVE Collapse Method <i>b</i>
BPZ_F	Bryzgalova et al. (2020) forest	Bryzgalova et al. (2020)
BPZ_L	linear characteristic-weighted portfolios	Bryzgalova et al. (2020)
BSV	linear characteristic-weighted portfolios	Brandt et al. (2009)
DGU	linear characteristic-weighted portfolios	DeMiguel et al. (2007)
DMRS	Daniel, Mota, Rottke, and Santos (2020)	Bryzgalova et al. (2020)
D_F	Davis (2021) random forest	b = 1
D_{NN}	Davis (2021) neural network	b = 1
FF3	Fama and French (1993)	Bryzgalova et al. (2020)
FF6	Fama and French (2015) with Carhart (1997) momentum	Bryzgalova et al. (2020)
GKX	Gu et al. (2021)	Bryzgalova et al. (2020)
HXZ	Hou et al. (2014)	Bryzgalova et al. (2020)
KNS	linear characteristic-weighted portfolios	Kozak et al. (2020)
KPS	Kelly et al. (2019)	Bryzgalova et al. (2020)
SL	Sharpe (1964b) and Lintner (1965) CAPM	b = 1
SY	Stambaugh and Yuan (2016)	Bryzgalova et al. (2020)

Correlations Between r^* from Different Models

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	SL	FF ₃	GKX	BPZ_F	DGU	FF_6	D_{F}	SY	DMRS	HXZ	D_{NN}	BPZ_L	KNS	KPS	BSV
SL	1.														
FF3	0.764	1.													
GKX	0.758	0.71	1.												
BPZ_F	0.219	0.222	0.163	1.											
DGU	0.439	0.734	0.446	0.593	1.										
FF6	-0.023	0.492	0.153	-0.02	-0.052	1.									
D_F	1.069	0.932	0.657	0.391	0.346	0.017	1.								
SY	-0.018	0.34	0.165	-0.021	-0.041	0.635	0.021	1.							
DMRS	0.186	0.438	0.21	0.054	0.043	0.553	0.21	0.293	1.						
HXZ	-0.042	0.227	0.115	-0.089	-0.126	0.648	-0.05	0.745	0.38	1.					
D_{NN}	0.457	0.741	0.463	0.67	0.968	0.011	0.951	-0.127	0.241	-0.153	1.				
BPZ_L	0.515	0.861	0.483	0.552	0.896	0.126	0.871	0.098	0.226	-0.007	0.814	1.			
KNS	0.51	0.847	0.481	0.53	0.857	0.144	0.852	0.118	0.243	0.017	0.798	0.978	1.		
KPS	0.468	0.426	0.338	0.425	0.435	-0.042	0.618	-0.103	0.083	-0.054	0.561	0.551	0.572	1.	
BSV	0.403	0.589	0.365	0.39	0.564	0.159	0.624	0.232	0.219	0.154	0.613	0.749	0.796	0.626	1.

Table 3. Dimson Adjusted Factor-MVE Portfolio Correlations

The Paper

Alpha from $r_{\textit{Row}}^* = \alpha + \beta \cdot r_{\textit{Column}}^* + \epsilon$

Table 5. Out-of-Sample Unconditional Dimson Alphas

								α_{ij}^*							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) Pricing Port	(9) folio į	(10)	(11)	(12)	(13)	(14)	(15)
	SL	FF ₃	GKX	BPZ_F	DGU	FF_6	$D_{\rm F}$	SY	DMRS	HXZ	D _{NN}	BPZL	KNS	KPS	BSV
Test Asset i															
SL		0.009	0.011	0.028**	0.043***	0.028**	-0.010	0.022*	0.024^{*}	0.018	0.055***	0.042***	0.040***	0.013	0.020
FF ₃	0.017^{*}		0.017	0.034**	0.036***	0.009	-0.008	0.009	0.018	0.010	0.033**	0.006	0.001	0.021	-0.009
GKX	0.027^{*}	0.022		0.042**	0.045***	0.034*	-0.001	0.022	0.033*	0.023	0.037**	0.020	0.013	0.010	-0.007
BPZF	0.056***	0.054***	0.055***		0.047***	0.065***	0.037***	0.065***	0.065***	0.068***	0.025***	0.023***	0.021**	0.011	0.018^{*}
DGU	0.052***	0.036**	0.043**	0.029		0.079***	-0.009	0.081***	0.064***	0.098***	-0.070***	-0.089***	-0.100***	-0.082***	-0.112***
FF ₆	0.088***	0.067***	0.080***	0.089***	0.091***		0.086***	0.017	0.027**	-0.007	0.082***	0.063***	0.060***	0.111***	0.057***
DF	0.053***	0.048***	0.053***	0.062***	0.064***	0.085***		0.079***	0.074***	0.085***	0.031**	0.017	0.009	-0.018	-0.016
SY	0.102***	0.087***	0.093***	0.102***	0.104***	0.045***	0.099***		0.067***	0.006	0.106***	0.083***	0.080***	0.130***	0.068***
DMRS	0.105***	0.093***	0.100***	0.107***	0.108***	0.062***	0.092***	0.081***		0.061***	0.086***	0.078***	0.073***	0.091***	0.064***
HXZ	0.134***	0.124***	0.127***	0.139***	0.141^{***}	0.076***	0.137***	0.058***	0.091***		0.145***	0.129***	0.127***	0.161***	0.116***
D _{NN}	0.162***	0.146***	0.153***	0.135***	0.113***	0.176***	0.094***	0.190***	0.150***	0.197***		0.001	-0.016*	-0.038**	-0.057***
BPZL	0.159***	0.139***	0.150***	0.140***	0.116***	0.164***	0.099***	0.165***	0.150***	0.176***	0.031***		-0.016***	0.004	-0.055***
KNS	0.173***	0.154***	0.164***	0.155***	0.132***	0.176***	0.115***	0.177***	0.162***	0.187***	0.048^{***}	0.017***		0.018	-0.046***
KPS	0.218***	0.215***	0.215***	0.205***	0.203***	0.236***	0.178^{***}	0.243***	0.223***	0.239***	0.133***	0.136***	0.124***		0.079***
BSV	0.236***	0.224***	0.230***	0.224***	0.211***	0.234***	0.194***	0.225***	0.224***	0.228***	0.140***	0.117***	0.098***	0.103***	
Span	0	2	2	1	0	1	4	3	1	5	0	4	3	7	4

The Paper

SL

DF

SY

Span

0

2

2

1

0

(14)

KPS

0.021

0.011

-0.082***

0.111***

-0.018

0.130***

0.091***

0.161***

-0.038**

0.004

0.018

0.103***

7

3

(15)

BSV

-0.009

-0.007

 0.018^{*}

-0.112***

0.057***

-0.016

0.068***

0.064***

0.116***

-0.057***

-0.055***

-0.046***

0.079***

4

Alpha from $r_{Row}^* = \alpha + \beta \cdot r_{Column}^* + \epsilon$

α_{ii}^* (1)(2)(3) (4)(5)(6) (7)(10)(11)(12)(13)(8)(9) Pricing Portfolio j SL FF₃ GKX BPZ_F DGU FF₆ $D_{\rm F}$ SY DMRS HXZ D_{NN} BPZL KNS Test Asset i 0.009 0.028** 0.043*** 0.028** 0.022* 0.024* 0.055*** 0.042*** 0.040*** -0.010FF₃ 0.034** 0.009 0.017* 0.017 0.036*** 0.009 -0.0080.010 0.033** 0.006 0.001 GKX 0.042** 0.045*** 0.033* 0.023 0.037** 0.034* -0.0010.056*** 0.054*** 0.055*** 0.047*** 0.065*** 0.037*** 0.065*** 0.065*** 0.068*** 0.025*** 0.023*** 0.021** BPZF DGU 0.052*** 0.036** 0.043** 0.029 0.079*** -0.0090.081*** 0.064*** 0.098*** -0.070*** -0.089*** -0.100*** FF₆ 0.067*** 0.080*** 0.089*** 0.091*** 0.086*** 0.027** 0.082*** 0.088*** 0.017 -0.0070.063*** 0.060*** 0.053*** 0.048*** 0.053*** 0.062*** 0.064^{***} 0.085*** 0.079*** 0.074*** 0.085*** 0.031** 0.017 0.009 0.102*** 0.087*** 0.093*** 0.102*** 0.104*** 0.045*** 0.099*** 0.067*** 0.006 0.106*** 0.083*** 0.080*** 0.107*** 0.073*** DMRS 0.105*** 0.093*** 0.100*** 0.108*** 0.062*** 0.092*** 0.081*** 0.061*** 0.086*** 0.078*** 0.091*** HXZ 0.134*** 0.124*** 0.127*** 0.139*** 0.141*** 0.076*** 0.137*** 0.058*** 0.145*** 0.129*** 0.127*** 0.197*** D_{NN} 0.162*** 0.146*** 0.153*** 0.135*** 0.113*** 0.176*** 0.094*** 0.190*** 0.150*** 0.001 -0.016^{*} BPZ 0.159*** 0.139*** 0.150*** 0.140*** 0.116*** 0.164*** 0.099*** 0.165*** 0.150*** 0.176*** 0.031*** -0.016*** KNS 0.173*** 0.154*** 0.164*** 0.155*** 0.132*** 0.176*** 0.115*** 0.177*** 0.162*** 0.187*** 0.048*** 0.017*** KPS 0.218*** 0.203*** 0.236*** 0.178*** 0.243*** 0.223*** 0.239*** 0.215*** 0.215*** 0.205*** 0.133*** 0.136*** 0.124*** BSV 0.236*** 0.224*** 0.230*** 0.224*** 0.211*** 0.234*** 0.194*** 0.225*** 0.224*** 0.228*** 0.140*** 0.117*** 0.098***

1

4

3

1

5

0

Table 5. Out-of-Sample Unconditional Dimson Alphas

Alpha from $r_{\textit{Row}}^* = \alpha + \beta \cdot r_{\textit{Column}}^* + \epsilon$

	(1)	(2)	(3)
	meta _{BSV}	meta _{DGU}	meta _{BPZ}
SL	0.004	-0.004	0.035**
FF ₃	0.036**	-0.039***	0.037**
GKX	0.032*	-0.020	0.046**
BPZ_F	0.061***	0.020**	0.041***
DGU	0.079***	-0.047**	0.014
FF ₆	0.098***	-0.024	0.048***
D _F	0.065***	-0.018	0.060***
SY	0.115***	0.006	0.105***
DMRS	0.092***	0.011	0.058***
HXZ	0.128***	0.053***	0.119***
D _{NN}	0.178***	-0.016	0.028
BPZL	0.181***	-0.014	0.052**
KNS	0.192***	-0.003	0.059**
KPS	0.185***	0.080***	0.030*
BSV	0.242***	0.072***	0.108***
Span	1	9	2

Table 8. Out-of-Sample Unconditional Dimson Alphas for Meta Portfolios

Alpha from $r_{Row}^* = \alpha + \beta \cdot r_{Column}^* + \epsilon$

	(1)	(2)	(3)
	meta _{BSV}	meta _{DGU}	meta _{BPZ}
SL	0.004	-0.004	0.035**
FF ₃	0.036**	-0.039***	0.037**
GKX	0.032*	-0.020	0.046**
BPZ_F	0.061***	0.020**	0.041***
DGU	0.079***	-0.047**	0.014
FF ₆	0.098***	-0.024	0.048***
D _F	0.065***	-0.018	0.060***
SY	0.115***	0.006	0.105***
DMRS	0.092***	0.011	0.058***
HXZ	0.128***	0.053***	0.119***
D _{NN}	0.178***	-0.016	0.028
BPZL	0.181***	-0.014	0.052**
KNS	0.192***	-0.003	0.059**
KPS	0.185***	0.080***	0.030*
BSV	0.242***	0.072***	0.108***
Span	1	9	2

Table 8. Out-of-Sample Unconditional Dimson Alphas for Meta Portfolios

• Traditional World: $T \to \infty$ and P fixed

• "Big Data World": $T \to \infty$ and $P \to \infty$ (with c = P/T)

- Traditional World: $T \to \infty$ and P fixed
- "Big Data World": $T \to \infty$ and $P \to \infty$ (with c = P/T)

- Traditional World: $T \to \infty$ and P fixed
- "Big Data World": $T \to \infty$ and $P \to \infty$ (with c = P/T)

Observable predictors but unknown r* parameters:

• Observable r* parameters but noisy predictors:

- Traditional World: $T \to \infty$ and P fixed
- "Big Data World": $T \to \infty$ and $P \to \infty$ (with c = P/T)

• Observable predictors but unknown r^* parameters:

 $\Pr_{P,T \to \infty} \mathbb{V}ar[\hat{r}^*] = \mathbb{V}ar[r^*] + \frac{c}{\gamma^2}$

Observable r* parameters but noisy predictors:

- Traditional World: $T \rightarrow \infty$ and P fixed
- "Big Data World": $T \to \infty$ and $P \to \infty$ (with c = P/T)

• Observable predictors but unknown r^* parameters:

$$\underset{P,T\to\infty}{Plim} \mathbb{V}ar[\hat{r}^*] = \mathbb{V}ar[r^*] + \frac{c}{\gamma^2}$$

Observable r* parameters but noisy predictors:

- Traditional World: $T \to \infty$ and P fixed
- "Big Data World": $T \to \infty$ and $P \to \infty$ (with c = P/T)

• Observable predictors but unknown r* parameters:

$$\underset{P,T\to\infty}{\text{Plim}} \, \mathbb{V}ar[\hat{r}^*] = \, \mathbb{V}ar[r^*] + \frac{c}{\gamma^2}$$

• Observable *r** parameters but noisy predictors:

$$\Pr_{P,T \to \infty} \mathbb{V}ar[\hat{r}^*] = \mathbb{V}ar[r^*] + N \cdot c \cdot \varphi_t$$

- Traditional World: $T \to \infty$ and P fixed
- "Big Data World": $T \to \infty$ and $P \to \infty$ (with c = P/T)

• Observable predictors but unknown r* parameters:

$$\underset{P,T\to\infty}{Plim} \mathbb{V}ar[\hat{r}^*] = \mathbb{V}ar[r^*] + \frac{c}{\gamma^2}$$

• Observable *r** parameters but noisy predictors:

$$\Pr_{P,T \to \infty}^{Plim} \mathbb{V}ar[\hat{r}^*] = \mathbb{V}ar[r^*] + N \cdot c \cdot \varphi_t$$

Outline

The Paper

My Comments

Final Remarks

My Reaction

My Reaction

• There are two steps to build r*

• Underlying argument for the theory in the paper:

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:

My Comments

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\,\circ\,$ But in a "Big Data World" Step 1 fails even with large 7
- But this theory cannot explain the meta r* results

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - \circ But in a "Big Data World" Step 1 fails even with large 7
- But this theory cannot explain the meta r* results
- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\circ~$ But in a "Big Data World" Step 1 fails even with large ${\it T}$
- But this theory cannot explain the meta *r** results

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\circ~$ But in a "Big Data World" Step 1 fails even with large \emph{T}
- But this theory cannot explain the meta *r** results
 - \circ The authors take the r* from each factor model (15 on total)
 - They then construct $r_{meta}^* = b'r^*$
 - And show that r^{*}_{meta} cannot price the underlying r^{*} OOS
 - $\circ\,$ This analysis does not require Step 1 (or predictors)
 - A "Big Data World" theory is silent about this meta *r** result

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\circ~$ But in a "Big Data World" Step 1 fails even with large ${\it T}$
- But this theory cannot explain the meta r^* results
 - The authors take the r^* from each factor model (15 on total)
 - They then construct $r_{meta}^* = b' r^*$
 - And show that r^*_{meta} cannot price the underlying r^* OOS
 - $\circ\,$ This analysis does not require Step 1 (or predictors)
 - $\circ\,$ A "Big Data World" theory is silent about this meta r^* result

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\circ~$ But in a "Big Data World" Step 1 fails even with large ${\it T}$
- But this theory cannot explain the meta r^* results
 - The authors take the r^* from each factor model (15 on total)
 - They then construct $r_{meta}^* = b' r^*$
 - And show that r^{*}_{meta} cannot price the underlying r^{*} OOS
 - $\circ\,$ This analysis does not require Step 1 (or predictors)
 - A "Big Data World" theory is silent about this meta *r** result

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\circ~$ But in a "Big Data World" Step 1 fails even with large ${\it T}$
- But this theory cannot explain the meta r^* results
 - The authors take the r^* from each factor model (15 on total)
 - They then construct $r_{meta}^* = b' r^*$
 - And show that r^*_{meta} cannot price the underlying r^* OOS
 - This analysis does not require Step 1 (or predictors)
 - $\circ\,$ A "Big Data World" theory is silent about this meta r^* result

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\circ~$ But in a "Big Data World" Step 1 fails even with large ${\it T}$
- But this theory cannot explain the meta r^* results
 - The authors take the r^* from each factor model (15 on total)
 - They then construct $r_{meta}^* = \mathbf{b}' r^*$
 - And show that r^*_{meta} cannot price the underlying r^* OOS
 - This analysis does not require Step 1 (or predictors)
 - A "Big Data World" theory is silent about this meta r* result

- There are two steps to build r^*
 - 1. Convert predictors into factors (f)
 - 2. Collapse factors into $r^* = b' f$
- Underlying argument for the theory in the paper:
 - Step 2 is fine
 - $\circ~$ But in a "Big Data World" Step 1 fails even with large \emph{T}
- But this theory cannot explain the meta r* results
 - The authors take the r^* from each factor model (15 on total)
 - They then construct $r_{meta}^* = \mathbf{b}' r^*$
 - And show that r^*_{meta} cannot price the underlying r^* OOS
 - This analysis does not require Step 1 (or predictors)
 - A "Big Data World" theory is silent about this meta r^* result

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:
 - Simulate returns with a known SDF
 - You can make realistic choices for N, T, and P
 - Apply the r* methods you explored to the simulations
 - o Do you still observe the "Factor Model Failure Puzzle"?
 - Do you observe it even with r^{*}_{meta}?
 - Try to explore why (or why not)

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:
 - Simulate returns with a known SDF
 - You can make realistic choices for N, T, and P
 - Apply the r* methods you explored to the simulations
 - o Do you still observe the "Factor Model Failure Puzzle"?
 - Do you observe it even with r^{*}_{meta}?
 - Try to explore why (or why not)

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:
 - Simulate returns with a known SDF
 - You can make realistic choices for N, T, and P
 - Apply the r* methods you explored to the simulations
 - o Do you still observe the "Factor Model Failure Puzzle"?
 - Do you observe it even with r_{meta}^* ?
 - Try to explore why (or why not)

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:
 - Simulate returns with a known SDF
 - You can make realistic choices for N, T, and P
 - Apply the r* methods you explored to the simulations
 - Do you still observe the "Factor Model Failure Puzzle"?
 - Do you observe it even with r_{meta}^* ?
 - Try to explore why (or why not)

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:
 - Simulate returns with a known SDF
 - You can make realistic choices for N, T, and P
 - Apply the *r*^{*} methods you explored to the simulations
 - Do you still observe the "Factor Model Failure Puzzle"?
 - Do you observe it even with r^{*}_{meta}?
 - Try to explore why (or why not)

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:
 - Simulate returns with a known SDF
 - You can make realistic choices for N, T, and P
 - Apply the *r*^{*} methods you explored to the simulations
 - Do you still observe the "Factor Model Failure Puzzle"?
 - Do you observe it even with r_{meta}^* ?
 - Try to explore why (or why not)

- It seems the theory does not fully explain the empirics
- I think it would be useful to explore simulations:
 - Simulate returns with a known SDF
 - You can make realistic choices for N, T, and P
 - Apply the r* methods you explored to the simulations
 - Do you still observe the "Factor Model Failure Puzzle"?
 - Do you observe it even with r_{meta}^* ?
 - Try to explore why (or why not)

• Two purposes for building a factor model:

- (1)
 eq (2) if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- $(1) \neq (2)$ if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- $(1) \neq (2)$ if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- (1)
 eq (2) if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- (1) \neq (2) if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- (1) \neq (2) if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

"We advocate for more research to understand the impact of measurement error in factor models and the relation between factor characteristics and the number of predictors needed to explain average returns."

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- (1) \neq (2) if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

"We advocate for more research to understand the impact of measurement error in factor models and the relation between factor characteristics and the number of predictors needed to explain average returns."

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- (1) \neq (2) if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

"We advocate for more research to understand the impact of measurement error in factor models and the relation between factor characteristics and the number of predictors needed to explain average returns."

• I would instead conclude:

"We cannot Identify r^* given the typical T and P. So, we are better off as a profession if we focus on (2) when building factor models" Chabi-Yo, Gonçalves, Loudis (2023)

- Two purposes for building a factor model:
 - (1) Build r^* to price all assets
 - (2) Identify factors that compensates for fundamental risks
- (1) \neq (2) if $\mathbb{E}[r]$ also have non-risk sources (likely the case)
- The authors focus on (1) and conclude:

"We advocate for more research to understand the impact of measurement error in factor models and the relation between factor characteristics and the number of predictors needed to explain average returns."

• I would instead conclude:

"We cannot Identify r^* given the typical T and P. So, we are better off as a profession if we focus on (2) when building factor models" Chabi-Yo, Gonçalves, Loudis (2023)

Some Minor Comments

- 1) Section 2 has to be shorter (mostly notation + section 2.4)
- 2) Some alphas are very large (e.g., $\alpha > 20\%$)
- Given (2), you should consider trading costs (Jensen, Kelly, Malamud, Pedersen (2022))
- If machine learning fails due to the multi-step process of converging predictors into weights, then Reinforcement Learning could help (Cong, Tang, Wang, Zhang (2022))

Outline

The Paper

My Comments

Final Remarks

Nice paper (and extremely careful implementation)

• It would be useful to:

• Good luck!

- Nice paper (and extremely careful implementation)
 - \circ Finding: no r^* prices well the r^* from other models OOS
 - Explanation: large T but also many $\mathbb{E}[r]$ predictors
- It would be useful to:

- Nice paper (and extremely careful implementation)
 - Finding: no r^* prices well the r^* from other models OOS
 - Explanation: large T but also many $\mathbb{E}[r]$ predictors
- It would be useful to:

• Nice paper (and extremely careful implementation)

- Finding: no r^* prices well the r^* from other models OOS
- Explanation: large T but also many $\mathbb{E}[r]$ predictors
- It would be useful to:

• Nice paper (and extremely careful implementation)

• Finding: no r^* prices well the r^* from other models OOS

• Explanation: large T but also many $\mathbb{E}[r]$ predictors

• It would be useful to:

• Provide a theory that can also explain the r_{meta}^* results

- $\circ~$ Add simulations to better understand the empirical results
- Reconsider the conclusion: should factor models focus on risk?
- Good luck!

• Nice paper (and extremely careful implementation)

• Finding: no r^* prices well the r^* from other models OOS

• Explanation: large T but also many $\mathbb{E}[r]$ predictors

• It would be useful to:

• Provide a theory that can also explain the r^*_{meta} results

 $\circ~$ Add simulations to better understand the empirical results

• Reconsider the conclusion: should factor models focus on risk?

• Good luck!

• Nice paper (and extremely careful implementation)

• Finding: no r^* prices well the r^* from other models OOS

• Explanation: large T but also many $\mathbb{E}[r]$ predictors

• It would be useful to:

• Provide a theory that can also explain the r^*_{meta} results

• Add simulations to better understand the empirical results

• Reconsider the conclusion: should factor models focus on risk?

• Nice paper (and extremely careful implementation)

• Finding: no r^* prices well the r^* from other models OOS

• Explanation: large T but also many $\mathbb{E}[r]$ predictors

• It would be useful to:

• Provide a theory that can also explain the r_{meta}^* results

- Add simulations to better understand the empirical results
- Reconsider the conclusion: should factor models focus on risk?

• Nice paper (and extremely careful implementation)

• Finding: no r^* prices well the r^* from other models OOS

• Explanation: large T but also many $\mathbb{E}[r]$ predictors

• It would be useful to:

• Provide a theory that can also explain the r_{meta}^* results

- Add simulations to better understand the empirical results
- Reconsider the conclusion: should factor models focus on risk?
- Good luck!