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® This paper: the “Factor Model Failure Puzzle”
o Expectation: T T = better r* estimates = r* converge
o Finding: no r* prices well the r* from other models OOS

o Explanation: large T but also many predictors



The Paper

Models for r* Estimation

Table 1. Zoo of Asset Pricing Models

Initialism  Factor Method f(Z;) MVE Collapse Method b
BPZg Bryzgalova et al. (2020) forest Bryzgalova et al. (2020)
BPZ, linear characteristic-weighted portfolios Bryzgalova et al. (2020)
BSV linear characteristic-weighted portfolios Brandt et al. (2009)
DGU linear characteristic-weighted portfolios DeMiguel et al. (2007)
DMRS Daniel, Mota, Rottke, and Santos (2020) Bryzgalova et al. (2020)
Dr Davis (2021) random forest b=1

Dnn Davis (2021) neural network b=1

FE3 Fama and French (1993) Bryzgalova et al. (2020)
FF6 Fama and French (2015) with Carhart (1997) momentum  Bryzgalova et al. (2020)
GKX Gu et al. (2021) Bryzgalova et al. (2020)
HXZ Hou et al. (2014) Bryzgalova et al. (2020)
KNS linear characteristic-weighted portfolios Kozak et al. (2020)

KPS Kelly et al. (2019) Bryzgalova et al. (2020)
SL Sharpe (1964b) and Lintner (1965) CAPM b=1

SY Stambaugh and Yuan (2016) Bryzgalova et al. (2020)
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Table 3. Dimson Adjusted Factor-MVE Portfolio Correlations

Correlations Between r* from Different Models

1 @ 3) @) 5) (6) @ ®) ©) 1 an 12 @13 (149 (15
SL FF3 GKX BPZr DGU  FFe Dk SY DMRS HXZ Dxn BPZL KNS KPS BSV

SL 1.

FF3 0764 1.

GKX 0758 071 1.

BPZr 0219 0222 0163 1.

DGU 0439 0734 0446 0593 1.

FF6 -0.023 0492 0153 -0.02 -0052 1

Dr 1069 0932 0657 0391 0346 0017 1.

SY -0018 034 0165 -0.021 -0.041 0635 0021 1.

DMRS 0186 0438 021 0054 0043 0553 021 0293 1

HXZ  -0042 0227 0115 -0089 -0.126 0.648 -0.05 0745  0.38 1.

Dy 0457 0741 0463 067 0968 0011 0951 -0.127 0241 -0.153 1.

BPZ. 0515 0.861 0483 0552 089 0126 0.871 0098 0226 -0.007 0814 1.

KNS 051 0847 0481 053 0857 0144 0852 0118 0243 0017 0798 0978 1.

KPS 0468 0426 0338 0425 0435 -0.042 0618 -0.103 008 -0.054 0561 0551 0572 1.

BSV 0403 0589 0365 039 0564 0159 0.624 0232 0219 0154 0613 0749 079 0626 1.
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Table 5. Out-of-Sample Unconditional Dimson Alphas

al
ij

1) 2 @) @) ®) ©6) @) ®) ©9) (10) 1) (12) (13) (14) (15)
Pricing Portfolio j

SL FF3 GKX BPZg DGU FFg Dy SY DMRS HXZ Dnn BPZ, KNS KPS BSV

Test Asset i
0.009 0.011 0.028™  0.043™  0.028" -0.010 0.022* 0.024" 0.018 0.055™* 0.042"* 0.040"" 0.013 0.020

FF3 0.017* 0.017 0.034*  0.036™  0.009 -0.008 0.009 0.018 0.010 0.033* 0.006 0.001 0.021 -0.009
GKX 0.027* 0.022 0.042"  0.045"*  0.034" -0.001 0.022 0.033" 0.023 0.037 0.020 0.013 0.010 -0.007
BPZg 0.056™  0.054™  0.055™" 0.047*  0.065"*  0.037"* 0.065"* 0.065™ 0.068*  0.025"  0.023"* 0.021" 0.011 0.018"
DGU 0.052*  0.036"  0.043" 0.029 0.079**  -0.009  0.081"* 0.064™ 0.098 -0.070"* -0.089"* -0.100"* -0.082"" -0.112""
FFq 0.088"*  0.067*  0.080"*  0.089"*  0.091"" 0.086™* 0.017 0.027*  -0.007  0.082™  0.063"*  0.060"*  0.111"*"
Dy 0.053"*  0.048"" 0.053™  0.062"" 0.064™  0.085" 0.079™*  0.074™  0.085™" 0.031" 0.017 0.009 -0.018
SY 0.102"*  0.087**  0.093"*  0.102"* 0.104™*  0.045"*  0.099™* 0.067"*  0.006 0.106™*  0.083"*  0.080"*  0.130
DMRS 0.105"*  0.093**  0.100**  0.107**  0.108"*  0.062"*  0.092*  0.081"" 0.061"*  0.086™*  0.078"*  0.073"*  0.091""
HXZ 0.134™ 0.139™  0.141"™  0.076"*  0.137"*  0.058"*  0.091"" 0.145™ 0.129™* 0.127" 0.161
Dnn 0.162"* 0135 0113 0.176** 0.094"* 0.190"* 0.150"*  0.197"* 0.001 -0.016"  -0.038"
BPZ. 0.159**  0.139"*  0.150"* 0.140™* 0.116™ 0.164™* 0.099"* 0.165"* 0.150"* 0.176"*  0.031"* -0.016™ 0.004
KNS 0.173™ 0.154™  0.164™ 0.155"* 0132 0.176™ 0.115" 0177 0.162™ 0.187""  0.048™  0.017"" 0.018
KPS 0218 0.215* 0.215"" 0205 0203 0.236"™ 0.178™ 0.243"* 0223 0.239"" 0.133" 0.136™" 0.124™
BSV 0.236™ 0224 0230 0224 0.211**  0.234™  0.194"* 0225 0.224"*  0.228"*  0.140"*  0.117**  0.098"*  0.103"*
Span 0 2 2 1 0 1 4 3 1 5 0 4 3 7 4
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Table 8. Qut-of-Sample Unconditional Dimson Alphas for Meta Portfolios

(1 ) (3)

metagsy metapgu metappz
SL 0.004 -0.004 0.035"
FF; 0.036™ -0.039 0.037*
GKX 0.032* -0.020 0.046™
BPZg 0.061" 0.020™ 0.041™
DGU 0.079* -0.047* 0.014
FFq 0.098™ -0.024 0.048™
Dr 0.065" -0.018 0.060™*
SY 0.115"™ 0.006 0.105"*
DMRS 0.092* 0.011 0.058"
HXZ 0.128™ 0.053" 0.119
Dnn 0.178"™ -0.016 0.028
BPZ; 0.181" -0.014 0.052"
KNS 0.192 -0.003 0.059"
KPS 0.185™ 0.080™ 0.030
BSV 0.242* 0.072" 0.108
Span 1 9 2
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® Traditional World: T — oo and P fixed

¢ “Big Data World": T — oo and P — oo (with c = P/T)

o Observable predictors but unknown r* parameters:

Plim Var[r'] = Var[r'] + —
y

P, T—o0

o Observable r* parameters but noisy predictors:

Plim Var[r'] = Var[r*] + N-c-¢;
P, T—o0
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® There are two steps to build r*

1. Convert predictors into factors ()

2. Collapse factors into r* = b'f
® Underlying argument for the theory in the paper:
o Step 2 is fine
o But in a “Big Data World” Step 1 fails even with large
® But this theory cannot explain the meta r* results
o The authors take the r* from each factor model (15 on total)

/

=br*

[e]

They then construct r;

meta

And show that r

meta

[¢]

cannot price the underlying r* O0S

o

This analysis does not require Step 1 (or predictors)

o

A “Big Data World” theory is silent about this meta r* result
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® |t seems the theory does not fully explain the empirics

® | think it would be useful to explore simulations:

o Simulate returns with a known SDF

o You can make realistic choices for N, T, and P

o

Apply the r* methods you explored to the simulations

[¢]

Do you still observe the “Factor Model Failure Puzzle"?

@]

Do you observe it even with r .7

[¢]

Try to explore why (or why not)
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(1) Build r* to price all assets
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e (1) #£(2)if also have non-risk sources (likely the case)
® The authors focus on (1) and conclude:

“We advocate for more research to understand the impact of
measurement error in factor models and the relation between
factor characteristics and the number of predictors needed to
explain average returns.”

® | would instead conclude:

“We cannot Identify r* given the typical T and P. So, we are
better off as a profession if we focus on (2) when building
factor models”
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My Comments

Some Minor Comments

1) Section 2 has to be shorter (mostly notation + section 2.4)
2) Some alphas are very large (e.g., @ > 20%)

3) Given (2), you should consider trading costs

4) If machine learning fails due to the multi-step process of

converging predictors into weights, then Reinforcement
Learning could help
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¢ Nice paper (and extremely careful implementation)
o Finding: no r* prices well the r* from other models OOS
o Explanation: large T but also many predictors

® |t would be useful to:

o Provide a theory that can also explain the r; .. results

meta

o Add simulations to better understand the empirical results

o Reconsider the conclusion: should factor models focus on risk?

® Good luck!
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