

The Cross-Section of Subjective Expectations: Understanding Prices and Anomalies

Ricardo De La O, Xiao Han, and Sean Myers

Discussant: Andrei S. Gonçalves

2024 Emerging Voices in Finance (Notre Dame)

Outline

The Paper

My Comments

Final Remarks

Literature:

• This paper:

• Literature:

- FIRE: dr "drives" time variation in aggregate equity prices
- SubE: g "drives" time variation in aggregate equity prices
- This paper:

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - SubE: g "drives" time variation in aggregate equity prices
- This paper:

• Literature:

- FIRE: *dr* "drives" time variation in aggregate equity prices
- $\circ~$ SubE: g "drives" time variation in aggregate equity prices

• This paper:

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:

FIRE: dr "drives" differences in equity prices across firms
 SubE: g "drives" differences in equity prices across firms
 Empirical Setting

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:

FIRE: *dr* "drives" differences in equity prices across firms
 SubE: g "drives" differences in equity prices across firms
 Empirical Setting

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - SubE: g "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: dr "drives" differences in equity prices across firms
 - $\circ~$ SubE: g "drives" differences in equity prices across firms
- Empirical Setting

- Literature:
 - $\circ~$ FIRE: dr~ "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: *dr* "drives" differences in equity prices across firms
 - $\circ~$ SubE: g~ "drives" differences in equity prices across firms
- Empirical Setting

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: dr "drives" differences in equity prices across firms
 - $\circ~$ SubE: g "drives" differences in equity prices across firms
- Empirical Setting

$$\widetilde{\rho x}_{i,t} \approx \sum_{j=1}^{h} \rho^{j-1} \cdot E_{t}^{*} [\Delta x_{i,t+j}] - \sum_{j=1}^{h} \rho^{j-1} \cdot E_{t}^{*} [r_{i,t+j}] + \rho^{h} \cdot E_{t}^{*} [\widetilde{\rho x}_{i,t+h}]$$

$$= \frac{Cov\left(\sum_{j=1}^{h} \rho^{j-1} \cdot E_{t}^{*} [\Delta x_{i,t+j}], \widetilde{\rho x}\right)}{Var(\widetilde{\rho x})} - \frac{Cov\left(\sum_{j=1}^{h} \rho^{j-1} \cdot E_{t}^{*} [r_{i,t+j}], \widetilde{\rho x}\right)}{Var(\widetilde{\rho x})} + \frac{Cov\left(\rho^{h} \cdot E_{t}^{*} [\widetilde{\rho x}_{i,t+h}], \widetilde{\rho x}\right)}{Var(\widetilde{\rho x})}$$

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: *dr* "drives" differences in equity prices across firms
 - $\circ~$ SubE: g "drives" differences in equity prices across firms
- Empirical Setting

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: *dr* "drives" differences in equity prices across firms
 - $\circ~$ SubE: g "drives" differences in equity prices across firms
- Empirical Setting

- \circ Need to measure log prices (p) and log earnings (x)
- FIRE: Realized earnings and prices (CRSP+COMPUSTAT)
- SubE: EPS forecasts and price targets (IBES+Value Line)

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: *dr* "drives" differences in equity prices across firms
 - $\circ~$ SubE: g "drives" differences in equity prices across firms
- Empirical Setting

• Need to measure log prices (p) and log earnings (x)

FIRE: Realized earnings and prices (CRSP+COMPUSTAT)
 SubE: EPS forecasts and price targets (IBES+Value Line)

- Literature:
 - $\circ~$ FIRE: dr~ "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: *dr* "drives" differences in equity prices across firms
 - $\circ~$ SubE: g "drives" differences in equity prices across firms
- Empirical Setting

- Need to measure log prices (p) and log earnings (x)
- FIRE: Realized earnings and prices (CRSP+COMPUSTAT)

 \circ SubE: EPS forecasts and price targets (IBES+Value Line)

- Literature:
 - FIRE: *dr* "drives" time variation in aggregate equity prices
 - $\circ~$ SubE: g~ "drives" time variation in aggregate equity prices
- This paper:
 - FIRE: *dr* "drives" differences in equity prices across firms
 - $\circ~$ SubE: g "drives" differences in equity prices across firms
- Empirical Setting

- Need to measure log prices (p) and log earnings (x)
- FIRE: Realized earnings and prices (CRSP+COMPUSTAT)
- SubE: EPS forecasts and price targets (IBES+Value Line)

$1 \approx CF_h + DR_h + FPX_h$

- $0 \approx (\Delta \widetilde{x}_{i,t+1} E_t^*[\Delta \widetilde{x}_{i,t+1}]) (\widetilde{r}_{i,t+1} E_t^*[r_{i,t+1}]) + \rho \cdot (\widetilde{\rho x}_{i,t+1} E_t^*[\widetilde{\rho x}_{i,t+1}])$
 - Decomposition Result:

$1 \approx CF_h + DR_h + FPX_h$

$0 \approx (\Delta \widetilde{x}_{i,t+1} - E_t^*[\Delta \widetilde{x}_{i,t+1}]) - (\widetilde{t}_{i,t+1} - E_t^*[t_{i,t+1}]) + \rho \cdot (\widetilde{\rho} \widetilde{x}_{i,t+1} - E_t^*[\widetilde{\rho} \widetilde{x}_{i,t+1}])$

- Decomposition Result:
 - FIRE: DR_h is more important than CF_h
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

$1 \approx CF_h + DR_h + FPX_h$

$0 \approx (\Delta \widetilde{x}_{i,t+1} - E_t^*[\Delta \widetilde{x}_{i,t+1}]) - (\widetilde{r}_{i,t+1} - E_t^*[r_{i,t+1}]) + \rho \cdot (\widetilde{\rho} \widetilde{x}_{i,t+1} - E_t^*[\widetilde{\rho} \widetilde{x}_{i,t+1}])$

- Decomposition Result:
 - FIRE: DR_h is more important than CF_h
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

$1 \approx CF_h + DR_h + FPX_h$

- Decomposition Result:
 - FIRE: *DR_h* is more important than *CF_h*
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

$1 \approx CF_h + DR_h + FPX_h$

- Decomposition Result:
 - FIRE: *DR_h* is more important than *CF_h*
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

Table I Decomposition of dispersion in price-earnings ratios

	One-y	ear horizon $(h = 1)$	One-to-four year horizon $(h = 4)$
	FIRE	Expected	
CF_h	0.103***	0.331***	
DR_h	0.143^{***}	0.033***	
FPX_h	0.746^{***}	0.620***	

$1 \approx CF_h + DR_h + FPX_h$

- Decomposition Result:
 - FIRE: DR_h is more important than CF_h
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

	One-year horizon $(h = 1)$			One-to-four year horizon $(h = 4)$		
	FIRE	Expected	FIRE	Expected		
CF_h	0.103***	0.331***	0.099*	0.433***		
DR_h	0.143^{***}	0.033***	0.320***	0.127***		
FPX_h	0.746^{***}	0.620***	0.550^{***}	0.385***		

Table I Decomposition of dispersion in price-earnings ratios

$1 \approx CF_h + DR_h + FPX_h$

- Decomposition Result:
 - FIRE: *DR_h* is more important than *CF_h*
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

	One-year horizon $(h = 1)$			One-to-four year horizon $(h = 4)$		
	FIRE	Expected	Forecast errors	FIRE	Expected	Forecast errors
CF_h	0.103***	0.331***	-0.228^{***}	0.099*	0.433***	-0.335***
DR_h	0.143^{***}	0.033***	0.110**	0.320***	0.127^{***}	0.192^{**}
FPX_h	0.746^{***}	0.620***	0.126^{**}	0.550***	0.385***	0.165^{***}

Table I Decomposition of dispersion in price-earnings ratios

 $1 \approx CF_h + DR_h + FPX_h$

- Decomposition Result:
 - FIRE: DR_h is more important than CF_h
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

	One-year horizon $(h = 1)$				One-to-four year horizon $(h = 4)$		
	FIRE	Expected	Forecast errors		FIRE	Expected	Forecast errors
CF_h	0.103***	0.331***	-0.228^{***}		0.099*	0.433***	-0.335***
DR_h	0.143^{***}	0.033***	0.110**		0.320***	0.127^{***}	0.192^{**}
FPX_h	0.746^{***}	0.620***	0.126^{**}		0.550^{***}	0.385***	0.165^{***}

Table I Decomposition of dispersion in price-earnings ratios

 $1 \approx CF_h + DR_h + FPX_h$

- Decomposition Result:
 - FIRE: DR_h is more important than CF_h
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

Table I Decomposition of dispersion in price-earnings ratios

	One-year horizon $(h = 1)$				One-to-four year horizon $(h = 4)$		
	FIRE	Expected	Forecast errors		FIRE	Expected	Forecast errors
CF_h	0.103***	0.331***	-0.228^{***}		0.099*	0.433***	-0.335***
DR_h	0.143^{***}	0.033***	0.110**		0.320***	0.127^{***}	0.192**
FPX_h	0.746^{***}	0.620***	0.126^{**}		0.550^{***}	0.385***	0.165^{***}

 $1 \approx CF_h + DR_h + FPX_h$

 $0 \approx \left(\Delta \widetilde{x}_{i,t+1} - E_t^*[\Delta \widetilde{x}_{i,t+1}]\right) - \left(\widetilde{r}_{i,t+1} - E_t^*[r_{i,t+1}]\right) + \rho \cdot \left(\widetilde{\rho x}_{i,t+1} - E_t^*[\widetilde{\rho x}_{i,t+1}]\right)$

- Decomposition Result:
 - FIRE: *DR_h* is more important than *CF_h*
 - SubE: CF_h^* is more important than DR_h^*
 - Forecast Errors: "stubborn" expectations

Table III

 $E_{t+1}^* \left[\Delta \tilde{x}_{i,t+2} \right] - E_t^* \left[\Delta \tilde{x}_{i,t+2} \right] = \beta \left(\Delta x_{i,t+1} - E_t^* \left[\Delta x_{i,t+1} \right] \right) + u_{t+1}$

Panel B:	Revisions after Surprises
Main Sample 1999-2020	-0.863***

Long Sample 1982-2020 -0.786***

 $|\mathbf{x}_{i,t}| = |\mathbf{x}_t^{agg}| + |\widetilde{\mathbf{x}}_{i,t}| \quad |\mathbf{x}_t^{agg}| = |\phi \cdot \mathbf{x}_{t-1}^{agg}| + |u_t| \quad |\widetilde{\mathbf{x}}_{i,t}| = |g_i \cdot t| + |\nu_{i,t}|$

• Economic Assumptions:

$$\mathbf{x}_{i,t} = \mathbf{x}_t^{agg} + \widetilde{\mathbf{x}}_{i,t}$$

Economic Assumptions:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t$$

 $x_{i,t} = g_i \cdot t + \nu_{i,t}$

Economic Assumptions:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t}$$
 $x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t$ $\widetilde{x}_{i,t} =$

$$\widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

Economic Assumptions:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad \boxed{x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t} \qquad \boxed{\widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}}$$

) Preference for LT CFs: $m_t = -r^f - 0.5 \cdot \gamma^2 \sigma_u^2 - \gamma \cdot u_t$

- 2) Transitory CFs:
- 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
- 4) (SubE) Constant-Gain Learning:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs:
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta X_{t,t+1}] = E_t[\alpha \Delta \alpha_{t+1}] = \alpha \alpha_{t+1}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g_i$
 - 4) (SubE) Constant-Gain Learning:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i m_i$
 - (FIRE) Homogeneous LT Growth: E_t[g_i] = g
 - 4) (SubE) Constant-Gain Learning:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$

4) (SubE) Constant-Gain Learning:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$\begin{split} E_t^*[g_l] &= E_{t-1}^*[g_l] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{l,t} - E_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{l,t}] \right) \\ E_t^*[\nu_{l,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{l,t} - E_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{l,t}] \right) \end{split}$$

Economic Implications

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

• Economic Assumptions:

1) Preference for LT CFs: $m_t = -r^f - 0.5 \cdot \gamma^2 \sigma_u^2 - \gamma \cdot u_t$

2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i - \Delta \nu_{i,t+1}] = g_i - \nu_{i,t}$

- 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
- 4) (SubE) Constant-Gain Learning:

 $E_t^*[g_i] = E_{t-1}^*[g_i] + \beta \cdot \left(\Delta \widetilde{x}_{i,t} - E_{t-1}^*[\Delta \widetilde{x}_{i,t}]\right)$

Economic Implications

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_{t}^{*}[g_{i}] &= \mathbf{E}_{t-1}^{*}[g_{i}] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_{t}^{*}[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

Economic Implications

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_{t}^{*}[g_{i}] &= \mathbf{E}_{t-1}^{*}[g_{i}] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_{t}^{*}[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

- Economic Implications
 - 1) $\uparrow E_t^*[g_t] \Rightarrow \downarrow E_t^*[\eta]$ (so p_t explained by both CF* and DR*) 2) $\uparrow p_t \Rightarrow \downarrow E_t[\eta]$ (so p_t explained mostly by DR) 3) Norative growth revisions:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_{t}^{*}[\mathbf{g}_{i}] &= \mathbf{E}_{t-1}^{*}[\mathbf{g}_{i}] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_{t}^{*}[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

Economic Implications

1) $\uparrow E_t^*[g_i] \Rightarrow \downarrow E_t^*[r_i]$ (so p_t explained by both CF* and DR*)

- $2) \uparrow \rho_t \Rightarrow \downarrow E_t[r_i] \qquad (so \ \rho_t \ explained \ mostly \ by \ DR)$
- 3) Negative growth revisions:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_{t}^{*}[g_{i}] &= \mathbf{E}_{t-1}^{*}[g_{i}] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_{t}^{*}[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

Economic Implications

1) $\uparrow E_t^*[g_i] \Rightarrow \downarrow E_t^*[r_i]$ (so p_t explained by both CF* and DR*)

2) $\uparrow p_t \Rightarrow \downarrow E_t[r_i]$ (so p_t explained mostly by DR)

Negative growth revisions:

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

• Economic Assumptions:

1) Preference for LT CFs: $m_t = -r^f - 0.5 \cdot \gamma^2 \sigma_u^2 - \gamma \cdot u_t$

2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i - \Delta \nu_{i,t+1}] = g_i - \nu_{i,t}$

- 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
- 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_t^*[g_i] &= \mathbf{E}_{t-1}^*[g_i] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_t^*[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

Economic Implications

1) $\uparrow E_t^*[g_i] \Rightarrow \downarrow E_t^*[r_i]$ (so p_t explained by both CF* and DR*)

- 2) $\uparrow p_t \Rightarrow \downarrow E_t[r_i]$ (so p_t explained mostly by DR)
- 3) Negative growth revisions:

 $(E_t^* - E_{t-1}^*)[\Delta \widetilde{x}_{i,t+1}] = (E_t^* - E_{t-1}^*)[g_i - \Delta \nu_{i,t+1}]$

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

• Economic Assumptions:

1) Preference for LT CFs: $m_t = -r^f - 0.5 \cdot \gamma^2 \sigma_u^2 - \gamma \cdot u_t$

2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i - \Delta \nu_{i,t+1}] = g_i - \nu_{i,t}$

- 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
- 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_{t}^{*}[g_{i}] &= \mathbf{E}_{t-1}^{*}[g_{i}] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_{t}^{*}[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^{*}[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

Economic Implications

1) $\uparrow E_t^*[g_i] \Rightarrow \downarrow E_t^*[r_i]$ (so p_t explained by both CF* and DR*)

- 2) $\uparrow p_t \Rightarrow \downarrow E_t[r_i]$ (so p_t explained mostly by DR)
- 3) Negative growth revisions:

$$(E_t^* - E_{t-1}^*)[\Delta \widetilde{x}_{i,t+1}] = (E_t^* - E_{t-1}^*)[g_i - \Delta \nu_{i,t+1}]$$

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

• Economic Assumptions:

1) Preference for LT CFs: $m_t = -r^f - 0.5 \cdot \gamma^2 \sigma_u^2 - \gamma \cdot u_t$

2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i - \Delta \nu_{i,t+1}] = g_i - \nu_{i,t}$

- 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
- 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_t^*[\mathbf{g}_i] &= \mathbf{E}_{t-1}^*[\mathbf{g}_i] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_t^*[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

Economic Implications

1) $\uparrow E_t^*[g_i] \Rightarrow \downarrow E_t^*[r_i]$ (so p_t explained by both CF* and DR*)

2) $\uparrow p_t \Rightarrow \downarrow E_t[r_i]$ (so p_t explained mostly by DR)

3) Negative growth revisions:

$$(E_t^* - E_{t-1}^*)[\Delta \widetilde{x}_{i,t+1}] = (E_t^* - E_{t-1}^*)[g_i] - E_t^*[\nu_{i,t}]$$

$$x_{i,t} = x_t^{agg} + \widetilde{x}_{i,t} \qquad x_t^{agg} = \phi \cdot x_{t-1}^{agg} + u_t \qquad \widetilde{x}_{i,t} = g_i \cdot t + \nu_{i,t}$$

- Economic Assumptions:
 - 1) Preference for LT CFs: $m_t = -r^f 0.5 \cdot \gamma^2 \sigma_u^2 \gamma \cdot u_t$
 - 2) Transitory CFs: $E_t[\Delta \widetilde{x}_{i,t+1}] = E_t[g_i \Delta \nu_{i,t+1}] = g_i \nu_{i,t}$
 - 3) (FIRE) Homogeneous LT Growth: $E_t[g_i] = g$
 - 4) (SubE) Constant-Gain Learning:

$$\begin{aligned} \mathbf{E}_t^*[\mathbf{g}_i] &= \mathbf{E}_{t-1}^*[\mathbf{g}_i] + \beta \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \\ \mathbf{E}_t^*[\nu_{i,t}] &= (1-\beta) \cdot \left(\Delta \widetilde{\mathbf{x}}_{i,t} - \mathbf{E}_{t-1}^*[\Delta \widetilde{\mathbf{x}}_{i,t}]\right) \end{aligned}$$

Economic Implications

1) $\uparrow E_t^*[g_i] \Rightarrow \downarrow E_t^*[r_i]$ (so p_t explained by both CF* and DR*)

- 2) $\uparrow p_t \Rightarrow \downarrow E_t[r_i]$ (so p_t explained mostly by DR)
- 3) Negative growth revisions:

$$\begin{aligned} (E_t^* - E_{t-1}^*)[\Delta \widetilde{x}_{i,t+1}] &= (E_t^* - E_{t-1}^*)[g_i] - E_t^*[\nu_{i,t}] \\ &= (2 \cdot \beta - 1) \cdot \left(\Delta \widetilde{x}_{i,t} - E_{t-1}^*[\Delta \widetilde{x}_{i,t}]\right) \end{aligned}$$

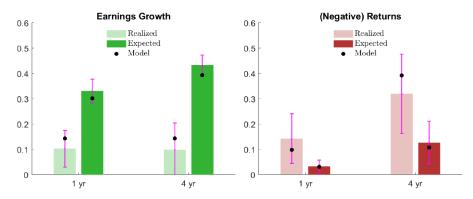


Figure 3. Empirical decomposition and model decomposition.

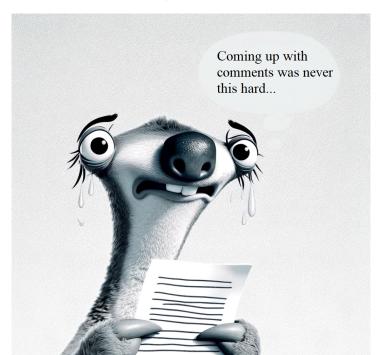
Outline

The Paper

My Comments

Final Remarks

My Comments



Relation to Chen, Da, and Zhao (2013) needs to be clearer:

• Relation to Chen, Da, and Zhao (2013) needs to be clearer:

They decompose time-series variation in r^{ex}_{t+h} = (P_{t+h} - P_t)/P_t
 The r^{ex}_{t+h} components are CF* and DR*

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*

• Relation to Chen, Da, and Zhao (2013) needs to be clearer:

- They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
- The r_{t+h}^{ex} components are CF^* and DR^*

CF* comes from earnings forecasts (IBES analysts)

* DR^* is obtained by solving $P = PV(CF^*, DR^*)$

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large h, CF^* dominates

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large *h*, *CF** dominates

• Relation to Chen, Da, and Zhao (2013) needs to be clearer:

- They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
- The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
- For large h, CF^* dominates

Table 2 Return decomposition using ICC approach

	Horizons (Quarters)								
	1	2	4	8	12	16	20	24	28
Panel B: Firm-level									
Decomposition									
CF	0.19	0.32	0.48	0.63	0.68	0.68	0.67	0.66	0.62
DR	0.81	0.68	0.52	0.37	0.32	0.32	0.33	0.34	0.38

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large *h*, *CF** dominates
 - r_{t+h}^{ex} for large h drives valuation ratios
 - So, cross-sectional valuation differences are dominated by CF*
 - $\circ~$ To be clear: there is plenty new in the paper I am discussing
- Connection to Décaire and Graham (2024)

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large h, CF^* dominates
 - r_{t+h}^{ex} for large h drives valuation ratios
 - So, cross-sectional valuation differences are dominated by CF^*

• To be clear: there is plenty new in the paper I am discussing

Connection to Décaire and Graham (2024)

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large h, CF^* dominates
 - r_{t+h}^{ex} for large h drives valuation ratios
 - $\circ\,$ So, cross-sectional valuation differences are dominated by CF*
 - To be clear: there is plenty new in the paper I am discussing
- Connection to Décaire and Graham (2024)

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large *h*, *CF*^{*} dominates
 - r_{t+h}^{ex} for large h drives valuation ratios
 - $\circ\,$ So, cross-sectional valuation differences are dominated by CF*
 - To be clear: there is plenty new in the paper I am discussing
- Connection to Décaire and Graham (2024)
 - $\circ\,$ Early version: DR^* drives 71% of time variation in P_t
 - $\,\circ\,$ Later version: DR^* drives 28% of time variation in P_t/CF_t
 - \circ You find \ll 50% (P/E, Method, Time Variation, or Data?)

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large *h*, *CF*^{*} dominates
 - r_{t+h}^{ex} for large h drives valuation ratios
 - So, cross-sectional valuation differences are dominated by CF*
 - To be clear: there is plenty new in the paper I am discussing
- Connection to Décaire and Graham (2024)
 - Early version: DR^* drives 71% of time variation in P_t
 - Later version: DR^* drives 28% of time variation in P_t/CF_t • You find \ll 50% (P/E. Method. Time Variation or Data?

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large *h*, *CF** dominates
 - r_{t+h}^{ex} for large h drives valuation ratios
 - $\circ\,$ So, cross-sectional valuation differences are dominated by CF*
 - To be clear: there is plenty new in the paper I am discussing
- Connection to Décaire and Graham (2024)
 - Early version: DR^* drives 71% of time variation in P_t
 - Later version: DR^* drives 28% of time variation in P_t/CF_t

 $\circ~$ You find \ll 50% (P/E, Method, Time Variation, or Data?

- Relation to Chen, Da, and Zhao (2013) needs to be clearer:
 - They decompose time-series variation in $r_{t+h}^{ex} = (P_{t+h} P_t)/P_t$
 - The r_{t+h}^{ex} components are CF^* and DR^*
 - * CF* comes from earnings forecasts (IBES analysts)
 - * DR^* is obtained by solving $P = PV(CF^*, DR^*)$
 - For large h, CF^* dominates
 - r_{t+h}^{ex} for large h drives valuation ratios
 - So, cross-sectional valuation differences are dominated by CF*
 - To be clear: there is plenty new in the paper I am discussing
- Connection to Décaire and Graham (2024)
 - Early version: DR^* drives 71% of time variation in P_t
 - Later version: DR^* drives 28% of time variation in P_t/CF_t
 - $\,\circ\,$ You find $\ll 50\%$ (P/E, Method, Time Variation, or Data?)

- The objective is to decompose prices (proxied by P/E)
- But *E* is more volatile than *P* (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics
- Using 3-year smoothed earnings helps, but is it enough?

- The objective is to decompose prices (proxied by P/E)
- But E is more volatile than P (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics
- Using 3-year smoothed earnings helps, but is it enough?

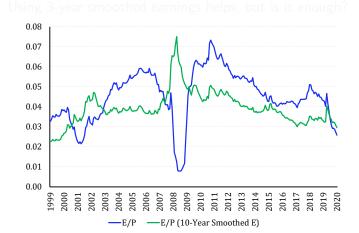
- The objective is to decompose prices (proxied by P/E)
- But *E* is more volatile than *P* (at least in the time series)
- So, the *P*/*E* dynamics may largely reflect *E* dynamics
- Using 3-year smoothed earnings helps, but is it enough?

- The objective is to decompose prices (proxied by P/E)
- But *E* is more volatile than *P* (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics

• Using 3-year smoothed earnings helps, but is it enough?

- The objective is to decompose prices (proxied by P/E)
- But *E* is more volatile than *P* (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics

- The objective is to decompose prices (proxied by P/E)
- But *E* is more volatile than *P* (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics



- The objective is to decompose prices (proxied by P/E)
- But E is more volatile than P (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics

Using 3-year smoothed earnings helps, but is it enough?

- The objective is to decompose prices (proxied by P/E)
- But E is more volatile than P (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics

- The objective is to decompose prices (proxied by P/E)
- But *E* is more volatile than *P* (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics
- Using 3-year smoothed earnings helps, but is it enough?
- It seems 3-year smoothed earnings goes a long way (cannot check your E/P because different months reflect different firms)
- However, there are still some counterfactual "price patterns"
- I suggest you add an analysis using P/D (analysts also provide D forecasts)
- Or (less preferred), add an analysis using 10-year smoothed earnings

- The objective is to decompose prices (proxied by P/E)
- But *E* is more volatile than *P* (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics
- Using 3-year smoothed earnings helps, but is it enough?
- It seems 3-year smoothed earnings goes a long way (cannot check your E/P because different months reflect different firms)
- However, there are still some counterfactual "price patterns"
- I suggest you add an analysis using P/D (analysts also provide D forecasts)
- Or (less preferred), add an analysis using 10-year smoothed earnings

- The objective is to decompose prices (proxied by P/E)
- But E is more volatile than P (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics
- Using 3-year smoothed earnings helps, but is it enough?
- It seems 3-year smoothed earnings goes a long way (cannot check your E/P because different months reflect different firms)
- However, there are still some counterfactual "price patterns"
- I suggest you add an analysis using P/D

(analysts also provide D forecasts)

Or (less preferred), add an analysis using 10-year smoothed earnings

- The objective is to decompose prices (proxied by P/E)
- But E is more volatile than P (at least in the time series)
- So, the P/E dynamics may largely reflect E dynamics
- Using 3-year smoothed earnings helps, but is it enough?
- It seems 3-year smoothed earnings goes a long way (cannot check your E/P because different months reflect different firms)
- However, there are still some counterfactual "price patterns"
- I suggest you add an analysis using P/D (analysts also provide D forecasts)
- Or (less preferred), add an analysis using 10-year smoothed earnings

• Model:

• To interpret the model as determining prices, we need more:

• (Issue 1) Investors seem to have heterogeneous beliefs:

Model:

- SDF + Belief Formation of investors who share analysts' beliefs
- Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:

• (Issue 1) Investors seem to have heterogeneous beliefs:

- Model:
 - $\circ~{\rm SDF}+{\rm Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:

• (Issue 1) Investors seem to have heterogeneous beliefs:

- Model:
 - SDF + Belief Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:

• (Issue 1) Investors seem to have heterogeneous beliefs:

- Model:
 - SDF + Belief Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - Investors have homogeneous beliefs (= beliefs from analysts)
 There is a new through from investors' heliefs to prices
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:

- Model:
 - SDF + Belief Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:

- Model:
 - SDF + Belief Formation of investors who share analysts' beliefs
 - · Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:

- Model:
 - \circ SDF + Belief Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:
 - E*[r] from analysts are countercyclical (Wu (2018), Bastianello (2024), Büsing, Mohrschladt (2023))
 - E*[r] from individual investors are procyclical (or acyclical) (Greenwood, Shleifer (2014))
 - E*[r] from Institutional investors are countercyclical (Dahlquist, Ibert (2024), Courts, Gonçalves, Loudis (2023))
- Are you assuming marginal investors = institutional investors?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:
 - $E^*[r]$ from analysts are countercyclical
 - (Wu (2018), Bastianello (2024), Büsing, Mohrschladt (2023))
 - E*[r] from individual investors are procyclical (or acyclical) (Greenwood, Shleifer (2014))
 - E*[r] from Institutional investors are countercyclical (Dahlquist, Ibert (2024), Courts, Gonçalves, Loudis (2023))
- Are you assuming marginal investors = institutional investors?

- Model:
 - \circ SDF + Belief Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:
 - *E**[*r*] from analysts are countercyclical (Wu (2018), Bastianello (2024), Büsing, Mohrschladt (2023))
 - *E**[*r*] from individual investors are procyclical (or acyclical) (Greenwood, Shleifer (2014))
 - E*[r] from Institutional investors are countercyclical (Dahlquist, Ibert (2024), Couts, Gonçalves, Loudis (2023))
- Are you assuming marginal investors = institutional investors?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:
 - *E**[*r*] from analysts are countercyclical (Wu (2018), Bastianello (2024), Büsing, Mohrschladt (2023))
 - *E**[*r*] from individual investors are procyclical (or acyclical) (Greenwood, Shleifer (2014))
 - *E**[*r*] from Institutional investors are countercyclical (Dahlquist, Ibert (2024), Couts, Gonçalves, Loudis (2023))
- Are you assuming marginal investors = institutional investors?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 1) Investors seem to have heterogeneous beliefs:
 - *E**[*r*] from analysts are countercyclical (Wu (2018), Bastianello (2024), Büsing, Mohrschladt (2023))
 - *E**[*r*] from individual investors are procyclical (or acyclical) (Greenwood, Shleifer (2014))
 - *E**[*r*] from Institutional investors are countercyclical (Dahlquist, Ibert (2024), Couts, Gonçalves, Loudis (2023))
- Are you assuming marginal investors = institutional investors?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 2) $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$ yields $b \approx 1$
 - E*[r] from analysts (aggregate equity time-series)
 (Wu (2018), Bastianello (2024))
 - E*[r] from analysts (cross-section of stocks) (Décaire, Graham (2024))
 - E*[r] from institutional investors (aggregate asset classes) (Courts, Gonçalves, Loudis (2023))
- Is the model consistent with bpprox 1?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 2) $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$ yields $b \approx 1$
 - *E**[*r*] from analysts (aggregate equity time-series) (Wu (2018), Bastianello (2024))
 - E*[r] from analysts (cross-section of stocks) (Décaire, Graham (2024))
 - E*[r] from institutional investors (aggregate asset classes) (Courts, Gonçalves, Loudis (2023))
- Is the model consistent with bpprox 1?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 2) $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$ yields $b \approx 1$
 - *E**[*r*] from analysts (aggregate equity time-series) (Wu (2018), Bastianello (2024))
 - *E**[*r*] from analysts (cross-section of stocks) (Décaire, Graham (2024))
 - E*[r] from institutional investors (aggregate asset classes) (Courts, Gonçalves, Loudis (2023))
- Is the model consistent with bpprox 1?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 2) $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$ yields $b \approx 1$
 - *E**[*r*] from analysts (aggregate equity time-series) (Wu (2018), Bastianello (2024))
 - *E**[*r*] from analysts (cross-section of stocks) (Décaire, Graham (2024))
 - *E**[*r*] from institutional investors (aggregate asset classes) (Couts, Gonçalves, Loudis (2023))
- Is the model consistent with bpprox 1?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 2) $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$ yields $b \approx 1$
 - *E**[*r*] from analysts (aggregate equity time-series) (Wu (2018), Bastianello (2024))
 - *E**[*r*] from analysts (cross-section of stocks) (Décaire, Graham (2024))
 - *E**[*r*] from institutional investors (aggregate asset classes) (Couts, Gonçalves, Loudis (2023))
- Is the model consistent with $b \approx 1$?

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 3) Belief shocks have weak price effects (Chaudry (2024))
 - $\circ ~ E^*[g]$ from analysts have a small pass through to investors (B)
 - $\circ~E^*[g]$ from investors have a small pass through to prices (M_g)
- Your model is consistent with $B \approx 0$ $(E_A^*[r]$ proxy for $E_l^*[r])$
- Is your model consistent with low M_g? I am not sure

- Model:
 - SDF + Belief Formation of investors who share analysts' beliefs
 - · Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 3) Belief shocks have weak price effects (Chaudry (2024))
 - $E^*[g]$ from analysts have a small pass through to investors (B)
 - $\circ~E^*[g]$ from investors have a small pass through to prices (M_g)
- Your model is consistent with B pprox 0 $(E_A^*[r]$ proxy for $E_l^*[r])$
- Is your model consistent with low M_g? I am not sure

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - · Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 3) Belief shocks have weak price effects (Chaudry (2024))
 - $E^*[g]$ from analysts have a small pass through to investors (B)
 - $E^*[g]$ from investors have a small pass through to prices (M_g)
- Your model is consistent with $B \approx 0$ $(E_A^*[r]$ proxy for $E_I^*[r])$
- Is your model consistent with low M_g? I am not sure

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 3) Belief shocks have weak price effects (Chaudry (2024))
 - $E^*[g]$ from analysts have a small pass through to investors (B)
 - $E^*[g]$ from investors have a small pass through to prices (M_g)
- Your model is consistent with $B \approx 0$ ($E_A^*[r]$ proxy for $E_I^*[r]$)
- Is your model consistent with low M_g? I am not sure

- Model:
 - SDF + Belief Formation of investors who share analysts' beliefs
 - · Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 3) Belief shocks have weak price effects (Chaudry (2024))
 - $E^*[g]$ from analysts have a small pass through to investors (B)
 - $E^*[g]$ from investors have a small pass through to prices (M_g)
- Your model is consistent with $B \approx 0$ ($E_A^*[r]$ proxy for $E_I^*[r]$)
- Is your model consistent with low M_g? I am not sure

Show that your model is consistent with low M_g or

 $\circ~$ Argue for a large M_g from general investor belief shocks

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 3) Belief shocks have weak price effects (Chaudry (2024))
 - $E^*[g]$ from analysts have a small pass through to investors (B)
 - $E^*[g]$ from investors have a small pass through to prices (M_g)
- Your model is consistent with $B \approx 0$ ($E_A^*[r]$ proxy for $E_I^*[r]$)
- Is your model consistent with low M_g? I am not sure
 - $\,\circ\,$ Show that your model is consistent with low M_g or
 - \circ Argue for a large M_g from general investor belief shocks

- Model:
 - $\circ~{\sf SDF}+{\sf Belief}$ Formation of investors who share analysts' beliefs
 - Such investors have private valuations in line with actual prices
- To interpret the model as determining prices, we need more:
 - 1) Investors have homogeneous beliefs (= beliefs from analysts)
 - 2) There is a pass through from investors' beliefs to prices
- (Issue 3) Belief shocks have weak price effects (Chaudry (2024))
 - $E^*[g]$ from analysts have a small pass through to investors (B)
 - $E^*[g]$ from investors have a small pass through to prices (M_g)
- Your model is consistent with $B \approx 0$ ($E_A^*[r]$ proxy for $E_I^*[r]$)
- Is your model consistent with low M_g ? I am not sure
 - $\,\circ\,$ Show that your model is consistent with low M_g or
 - $\,\circ\,$ Argue for a large M_g from general investor belief shocks

Some Other Comments

1) We disagree on why FIRE models fail

- You think they have too little variation in risk premia (e.g., second paragraph of page 16)
- I think they have too much variation in expected cash flows
- 2) Bayesian Learning vs Constant-Gain Learning
 - Suppose we let g_i differ across firms (Internet Appendix H.3)
 - Is the β value the only difference between learning models?
 - If so, how far is the $\beta = 1.8\%$ from the Bayesian β ?
- 3) $E^*[g]$ based on EPS while realized earnings are not per share
- 4) I think $w_{i,t,1}$ in Equation 18 should have a $E_t^*[\Delta \widetilde{x}_{i,t+1}]$ term

Outline

The Paper

My Comments

Absolutely a great paper (expect to see it in a top journal)

• It would be useful to:

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - $\circ~$ Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:

• Absolutely a great paper (expect to see it in a top journal)

• Link valuation differences across firms to $E^*[r]$ and $E^*[g]$

Identifies a mismatch between FIRE and SubE

Proposes a (very) parsimonious model to explain results

• It would be useful to:

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:
 - Further discuss connections to prior (and subsequent) literature
 - Add an analysis of P/D
 - \circ Think about the bpprox 1 in $r_{t+1}=a+b\cdot E_t^*[r]+arepsilon_{t+1}$
 - Think about the weak effect of beliefs on asset prices
- Good luck!

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:
 - Further discuss connections to prior (and subsequent) literature
 - Add an analysis of P/D
 - \circ Think about the bpprox 1 in $r_{t+1}=a+b\cdot E_t^*[r]+arepsilon_{t+1}$
 - Think about the weak effect of beliefs on asset prices
- Good luck!

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:
 - Further discuss connections to prior (and subsequent) literature
 - Add an analysis of P/D
 - Think about the $b \approx 1$ in $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$
 - Think about the weak effect of beliefs on asset prices
- Good luck!

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:
 - Further discuss connections to prior (and subsequent) literature
 - Add an analysis of P/D
 - Think about the $b \approx 1$ in $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$

• Think about the weak effect of beliefs on asset prices

• Good luck!

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - Proposes a (very) parsimonious model to explain results
- It would be useful to:
 - Further discuss connections to prior (and subsequent) literature
 - Add an analysis of P/D
 - Think about the $b \approx 1$ in $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$
 - Think about the weak effect of beliefs on asset prices

Good luck!

- Absolutely a great paper (expect to see it in a top journal)
 - Link valuation differences across firms to $E^*[r]$ and $E^*[g]$
 - Identifies a mismatch between FIRE and SubE
 - · Proposes a (very) parsimonious model to explain results
- It would be useful to:
 - Further discuss connections to prior (and subsequent) literature
 - Add an analysis of P/D
 - Think about the $b \approx 1$ in $r_{t+1} = a + b \cdot E_t^*[r] + \varepsilon_{t+1}$
 - Think about the weak effect of beliefs on asset prices
- Good luck!